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ABSTRACT 

 

Rainfall is one of the most important sources of water on earth supporting the 

existence of the majority of living organisms. A time series analysis, modeling and 

forecasting constitutes a tool of importance with reference to a wide range of scientific 

purposes in Meteorology. Examples is precipitation, humidity, temperature, solar 

radiation, floods and draught. This study research applies the Box-Jenkins 

methodology, employing SARIMA (Seasonal Autoregressive Integrated Moving 

Average) model to perform modeling past rainfall time series components structure and 

predicting further rainfall in according to the past. This methodology are capable of 

representing stational as well as nonstationary time series. The model is mostly fit to 

both show the past rainfall data and thus generate the most reliable further forecasted is 

selected by the R2, RMSE and BIC for model evaluation criteria.  This paper explores 

the application of the Box-Jenkins approach to Rainfall data series in Chauk and 

Shwebo Townships in Myanmar. As the statistical characteristic for stochastic seasonal 

models are also investigated and the fitted model for monthly rainfall data series in 

Chauk and Shwebo Township in Central Dry Zone of Myanmar from January, 2006 to 

December, 2018. The monthly rainfall date are found by the following the four states 

of model building, identification, estimation, diagnostic checking and forecasting. The 

statistical package, SPSS software and EViews software was used to build models for 

the above two series.  
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CHAPTER I 

INTRODUCTION 

 

1.1 Rationale of Study 

Rainfall is one of the most important components of water resource management for 

decision making and planning especially in agricultural sectors and industry. The influence of 

rainfall on flooding with downstream implication of erosion, water quality, agriculture, the 

operation of sewage system and tourism among others cannot be over emphasized. For this 

reason, early warning of rainfall is very important in the use and management of water resources. 

As an important resource in all life and transport processes, water is also an 

energy source that serves many other useful purposes, such as household consumption, 

agriculture and industry. Plants are watered through natural sources and irrigation. But 

today, global climate change is affecting water resources around the world. Climate 

change is no longer Santa Claus, but negatively affects the climate pattern and at the same 

time increases the frequency of natural disasters. These adverse effects appear to be small 

on a small scale but looking at a wider range of patterns is threatening the lives and wealth 

of the world's population. This is the case when the climate crisis has a dangerous effect 

on the water cycle. In this regard, we must investigate how global climate change 

negatively affects the water cycle. In other words, the reason why climate change 

sometimes means more rain is causing floods and sometimes reducing rain, causing 

drought. 

On the other hand, we need to explore how climate change is affecting Myanmar 

in general and its water resources in particular.  Being a tropical country, Myanmar is 

highly vulnerable to climate change and climatic variances because Myanmar is an agro-

based economy where almost 70% of its population is living on farming activities and 

agricultural productions. In Myanmar, dry land area is located as its central region which 

occupies 10% of the total area of Myanmar (54,390 sq.km) and contains 57 townships 

and 13 districts and is home to sixteen million people (one-third of the total population 

of Myanmar). Dry Zone area is defined by the annual rainfall amount being less than 40 

inches (101.6 cm) is known as the dry zone (L.D Stamp, 1964, cited in Saw Myint Tun, 

1989-90).  
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The Central Dry Zone is one of the most climate sensitive and natural resource 

poor regions in Myanmar and vulnerable to growing food insecurity and serve 

environmental degradation. It covers about 13% of the country’s land area but is home 

to an estimated 14.5 million, 85% of which are farmers or farm laborers dependent on 

rainfed agriculture. Central Dry Zone is situated in central Myanmar covering parts of 

Magwe, Mandalay and Sagaing Regions. Compared to other regions of the country, 

Central Dry Zone has very harsh climatic conditions with very low rainfall and extremely 

high temperature. Annual precipitation in the Dry Zone is, in average, less than 30 inches 

(750 mm), with marked variations occurring within the region. Over the last decade, there 

has been more frequently less rainfalls. It has a long dry season of six months from 

December to April with highest temperature rising over 42’ C in day time and lowest 

temperature dropping to about 12’ C during night time. 

The average rainfall in the Dry Zone is only an estimated 500-1000 mm compared 

to the national average annual rainfall during rainy season which is usually from May to 

October. The rainfall of Dry Zone has two distinct peaks as opposed to the unimodal 

rainfall behavior in other parts of the country. In addition, in July, the rainfall drops in 

Dry Zone while the month is characterized as part of the peak monsoon period in many 

other areas in Myanmar. Due to various physical influences, the Dry Zone is also the 

warmest part of Myanmar with high diurnal variation (i.e, difference in day and night 

temperatures). 

Agriculture is the dominant livelihood in Myanmar’s Dry Zone, absorbing over 

80% of the working population. The average farm size in the Dry Zone is about 4.5 acres. 

Subsistence farming (i.e., growing paddy, sesame, beans, groundnuts and rearing small-

scale livestock) is the major economy in the region. In fact, the Dry Zone, the most water-

stressed area in Myanmar, contributes significantly to national agricultural production. 

Wet season rainfall is an important water resource for households and livelihoods in 

many areas of the Dry Zone and therefore, the climate shocks (i.e., extreme rainfall, 

rainfall insufficiency, and extreme temperature) are considered serious hazards with 

potential adverse effects.  

In fact, changes in rainfall are one of the most critical indicators that can show 

the overall impact of climate change. Although, at a detailed level, rainfall is much more 

difficult to predict than other factors, recent studies explore if, in a warmer climate, heavy 

rainfall likely increases longer dry spells and a higher risk of floods. In addition, recent 
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studies tend to examine if increases in heavy rainfall during winter become more 

noticeable in the 2020s.  

For these reasons, this need to calculate normal monthly rainfall values for the 

climatic regions of the country. Out of these regions, I have chosen Central Dry Zone to 

study the new normal period over years in the zone or region. Here, Chauk is a town in 

Magway and Shwebo is a town in Sagaing region, about 110km northwest of Mandalay 

between the Irrawaddy and Mu rivers which was selected as study area because the 

townships were selected on the basis of the observed temperature extremes, frequency of 

drought per year and the impacts of climatic parameter on food security.  

Chauk’s local economy is driven by its oil field refinery which processes crude 

oil. An estimated 42% (57,804) of Chauk’s working population of 137,122 depend on 

agriculture and 55.39% (135,703lka) of the town’s land area of 245, 013 lka is irrigated. 

Chauk has tropical climate with little rainfall throughout the year.  Shwebo township is 

a trade center for agricultural products like beans, rice and sesame and the township has 

a working population of 261,875 of which 72% (71,157) are farmers then it has a land 

area of 185, 320lka with 19.38% (35,915lka) non-irrigated. 

The purpose of the proposed thesis is to forecast the future rainfall series or there 

will be more or less rain in Dry Zone in the future and thus, enhancing the capacity o1f 

farmers to plan for and response to future impacts of Climate on food security. Under 

this light, this study attempts to fill this gap by forecasting and analyzing the various 

observed rainfall parameters by using the statistical models of Time Series Analysis, 

ARIMA Model and Forecasting Method based on secondary data from 2006 to 2018.  

 

1.2 Objectives of the Study 

The overall objective of the study is to calculate monthly rainfall data of Central 

Dry Zone in Myanmar for the new normal period over years. 

Specifically, the objectives of the study are: 

(i) To build up a model of SARIMA, which will be used in forecasting 

rainfall pattern of Chauk and Shwebo townships in Central Dry Zone with 

the secondary rainfall data of 2006-2018. 

(ii) To predict the future rainfall in Chauk and Shwebo township in 

Central Dry Zone based on the fitted SARIMA model. 
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1.3 Method of Study 

This study is based on the model building procedure by Box-Jenkins (1976). The 

analytical method of time series analysis and forecasting is the use of a model to predict 

future value, based on previously observed values. The data are obtained from 

Department of Meteorology and Hydrology (2006-2018). It was used the Statistical 

Packages Social Software (SPSS) and EViews Software partially. Firstly, the observed 

data series are verified for existence of seasonality and stationery. After that, the 

approach of Box-Jenkins methodology in order to build ARIMA models is based on the 

following steps: Model Identification will be made based on autocorrelation (ACF) and 

partial autocorrelation function (PACF). The parameter are estimated by using 

Maximum Likelihood Method, depending on the model. Furthermore, the model 

diagnostic checking was verified by plots of the correlograms and ACF and PACF of the 

residuals and Ljung-Box test, which is a test for hypotheses of no correlation across a 

specified number of time lags. Then, the forecast values for Monthly Rainfall Data are 

computed based on the fitted model.  

  

1.4 Scope and Limitation of Study 

The study focuses on two townships – Chauk township in Magway Region and 

Shwebo townships in Sagaing region in Central Dry Zone which covers 13 districts and 

57 townships. It has the region of Mandalay, Sagaing and Magway. The townships were 

selected on the basis of observed temperature extremes, frequency of drought per year 

and the impacts of climatic parameters on food security. The Dry Zone is characterized 

by high spatial climate variability. The statistical data of 156 monthly rainfalls data 

during the period of January-2006 to December-2018. Likewise, the monthly secondary 

data are taken from Department of Meteorology and Hydrology. In this study, the 

generated historical patterns in a time series will be forecasted using SARIMA model. 

 

1.5 Organization of Study  

This study is divided into five chapters. Chapter I is introduction which is 

consisting of five sub-headings: rationale of the study, objectives of the study, method 

of study, scope of the study and organization of the study. Chapter II is presented with 

literature reviews on forecasting of rainfall data in Central Dry Zone in Myanmar for 

time series analysis. Chapter III is with research methodology. Chapter IV presents 

model building of a time series data analysis of rainfall forecasting the observed data 
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series and forecast evaluation in Central Dry Zone. Conclusion is illustrated in Chapter 

V. 
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CHAPTER II 

LITERATURE REVIEWS 

 

Autoregressive integrated moving average (ARIMA) is the method first 

introduced by Box and Jenkins (1976) and until now become the most popular models 

for forecasting univariate time series data. The data has been originated from the 

Autoregressive model (AR), the Moving Average model (MA) and the combination of 

the AR and MA, the ARMA models. A popular approach to forecast rainfall data in the 

short-run is the seasonal Box-Jenkins model. In the case of including seasonal 

components in this model, then the model is called as the SARIMA model. Box-Jenkins 

procedure containing three main stages to build an ARIMA model which is  model 

identification, model estimation and model checking, is usually used for determining the 

best ARIMA model for certain time series data. 

In this chapter, an attempt has been made to critically review the literature of the 

past research work relevant to the present study. The available literature on the subject 

has been reviewed and presented under the following: “Iyengar et al.” proposed rainfall 

forecasting model based on the rainfall data itself which is decomposable into six 

empirical time series. 

Harvey et al. (1987) investigated how patterns of rainfall correlated with general 

weather conditions and frequency of cycles of rainfall in Brazil and they found that 

cyclical components are stochastic rather than deterministic, and the gains achieved from 

forecast by taking account of the cyclic components are stochastic rather than 

deterministic and the gains achieved from forecast by taking account of the cyclic 

component are small in the case.  

Samagaio and Wolters (2010), who applied the SARIMA model and the Holt-

Winters method for examining the official forecasts of rainfall patterns between 2006 

and 2018; the conclusion was that the forecasting results of the SARIMA model appear 

to be acceptable in the short-run. 

Amha (2010) studied the monthly rainfall and temperature in Northern region 

based on Bauchi station and he employed univariate Box-Jenkins method to analyze 

rainfall in the region and found that SARIMA model is suitable for forecasting future 

value of monthly rainfall and temperature data and used this model to forecast 12-month 

rainfall pattern in this study area. Further he concluded that there is no tendency of 
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decreasing or increasing pattern of monthly rainfall and temperature over the forecast 

period from January 2010 to September 2011.  

Seyed et al. (2011) studied that time series method to model weather parameter 

in Iran and recommended ARIMA (0,0,1) x (1,1,1)12 as the best fit for monthly rainfall 

data and ARIMA(2,1,0)(2,1,0)12 for monthly average temperature for the region. 

Mahsin et al. (2012) used Box-Jenkins methodology to build seasonal ARIMA 

model for monthly rainfall ant temperature data taken for Bangladesh, for the period 

between 1981-2010. In their work, ARIMA (0,0,1) x (0,1,1)12 model was found adequate 

and the model is used for forecasting the monthly rainfall and temperature.  

Al-Ansari et al. (2013) studies that the statistical analysis of the rainfall 

measurements for three meteorological stations in Jordan: Amman Airport (central 

Jordan), Irbid (northern Jordan) and Mafraq (eastern Jordan). Normal statistical and 

power spectrum analyses as well as ARIMA model were performed on the long-term 

annual rainfall measurements at the three stations. A time series model for each station 

was adjusted, processed, diagnostically checked and lastly an ARIMA model for each 

station is established with a 95% confidence interval and the model was used to forecast 

5 years annual rainfall values for Amman, Irbid and Mafraq meteorological stations. 

Further result indicated that there is decreasing trend for forecasted rainfall results in all 

stations.  

Nail, P.E. et al, [2009] used Box-Jenkins methodology to build ARIMA model 

for monthly rainfall data taken for Amman airport station for the period from 1992-1999 

with a total of 936 readings. In their research, ARIMA (1, 0, 0) (0, 1, 1)12 model was 

developed. This model was used to forecasting the monthly rainfall for the upcoming 10 

years to help decision makers establish priorities in terms of water demand management. 

They then recommended an intervention time series analysis to be used to forecast the 

peak values of rainfall data. 
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CHAPTER III 

RESEARCH METHODOLOGY 

 

A time series is an ordered a sequential set of observations. The ordering is usually 

through time, particularly in terms of some equally spaced time intervals such as 

hourly, daily, weekly, monthly or yearly time separations. The ordering may also 

be taken through other dimensions such as space. Time series occur in a variety of 

fields. In agriculture, this can observe an annual crop production and prices. In 

meteorology, this can over serve hourly wind speeds, daily temperature and 

annual rainfall. The main objective of studying a time series is to forecast or 

predict the further behavior or movements on the basis of its past and present 

situations.  

However, many applied time series, particularly those arising from economic and 

business areas, are non-stationary. A very useful class of homogeneous non-stationary 

time series models is the Autoregressive Integrated Moving Average (ARIMA) Models. 

In the case where seasonal components are included in this model, then the model is 

called as the SARIMA model. In this studied, SARIMA ሺ0,0,0ሻ ൈ

ሺ2,1,0ሻଵଶ and ሺ0,0,0ሻ ൈ ሺ2,1,0ሻଵଶ model constructed for Monthly Rainfall data in Chauk 

and Shwebo township in Myanmar. The fitted models will be applied to forecast the 

future values, which can be used in decision-making and policy-making. 

 

3.1 Components of A Time Series  

 A time series in general is supposed to be affected by four main components 

which can be separated from the observed data. These components are: Trend, Cyclical, 

Seasonal and Irregular components. A model represents the underlying process that 

generates a time series. A mathematical model of a time series may be expressed in 

functional form. The relationship is usually described by one of two models: the 

multiplicative model and the additive model. 

   Y = T + S + C + I 

                  Y = Tt + St + Ct + It                                      (3.1) 

Where,   

Y = observed value of the variable of interest 

T = trend component 
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S = seasonal component 

C = cyclical component 

I = irregular component  

 

3.1.1 Trend Component 

The general tendency of a time series to increase, decrease or stagnate over a long 

period of time is termed as Secular Trend or simply Trend. Thus, it can be said that trend 

is a long term movement in a time series and a major use of trend analysis for long-term 

forecasting. The trend may either be an upward trend or downward trend. In this case, 

the trend is a period- to- period increase that follows a straight line, a pattern called a 

linear trend.  

 

3.1.2 Seasonal Component  

The seasonal component describes effects that occur regularly over a period of a 

year, month, quarter, week or day. Seasonal variations in a time series are fluctuations 

within a year during the season. The important factors causing seasonal variations are: 

climate and weathered conditions, customs, traditional habits, etc. Seasonality can occur 

many different ways, for example, by week of the year, month of the year, day of month, 

day of the week.  

 

3.1.3 Cyclical Component 

The cyclical component of a time series refers to (regular or periodic) fluctuations 

around the trend, excluding the irregular component, revealing a succession of phases of 

expansion and contraction. The cyclical component can be viewed as those fluctuations 

in a time series which are longer than a given threshold, 1½ years, but shorter than those 

attributed to the trend. 

The cyclical variation in a time describes the medium -term changes in the series, 

caused by circumstances, which repeat in cycles. The duration of a cycle extends over 

longer period of time, usually two more years. The duration of a cycle depends on the 

type of business or industry being analyzed. Any pattern showing an up and down 

movement around a given trend is identified as a cyclical pattern.  
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3.1.4 Irregular Component 

The irregular component of time series is the residual time series after the trend-

cycle and the seasonal component of a time series is the residual time series after the 

trend-cycle and the seasonal components (including calendar effects) have been 

removed. It corresponds to the high frequency fluctuations of the series. The irregular 

component results from short term fluctuations in a series which are not systematic and 

in some instances, not predictable, uncharacteristic weather patterns.  In a highly irregular 

series, these fluctuations can dominate movements, which will make the trend and 

seasonality.  

 

3.2 Stochastic Processes  

A stochastic process is a family of time indexed random variables Z(w,t), where 

w belongs to a sample space and t belongs to an index set. For a fixed t, Z(w,t) is a random 

variable. For a given w, Z(w,t), as a function of t, is called a sample function or realization. 

The population that consists of all possible realization is called ensemble in stochastic 

process and time series analysis. Thus, a time series is a realization or sample function 

from a certain stochastic process. Important classes of stochastic processes are stationary 

stochastic processes and non-stationary stochastic processes. 

 

3.3 Stationary Stochastic Processes  

 Stationary stochastic process is based on the assumption that the process is in a 

particular static of statistical equilibrium. A stochastic process is said to be strictly 

stationary if its moments are unaffected by a change of time origin. For a discrete process 

to be strictly stationary, the joint distribution of any set of observations must be 

unaffected by shifting all the times of observations forward or backward by any integer 

amount k. The AR (1) process is said to be stationary, if absolute ∅ଵ< 1. 

 

3.3.1 Mean and Variance of Stochastic Process 

The stochastic process 𝑍௧ has a constant mean, 

𝜇 ൌ 𝜇௧ ൌ 𝐸ሺ𝑍௧ሻ ൌ ׬ 𝑧௧
ାஶ

ିஶ 𝑝ሺ𝑧௧ሻ𝑑𝑧௧  (3.2)

   

This defines the level about which it fluctuates, and a constant variance. 

𝜎௭
ଶ ൌ 𝜎௭೟

ଶ ൌ 𝐸ሺ𝑧௧ െ 𝜇௧ሻଶ ൌ ׬ ሺ𝑧௧ െ 𝜇௧ሻଶାஶ
ିஶ 𝑝ሺ𝑧௧ሻ𝑑𝑧௧ (3.3) 
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which measures its spread about this time level. 

 The mean 𝜇 of the stochastic process can be estimated by the sample mean 

𝑍̅௧ ൌ ଵ

ே
∑ 𝑍௧

ே
௧ୀଵ  (3.4)

           

and the variance  𝜎௭೟
ଶ  can be estimated by the sample variance 

𝜎ො௭೟
ଶ ൌ ଵ

ே
∑ ሺ𝑍௧ െ 𝑍̅௧ሻଶே

௧ୀଵ                  (3.5) 

If the 𝜇௧, 𝜎௭೟
ଶ  do not depend on t (or) they are constant values, the stochastic process 

is called strictly stationary process. 

 

3.3.2 Autocovariance and Autocorrelation Coefficients  

The covariance between 𝒁𝒕 and 𝒁𝒕ା𝒌 is called the auto-covariance at lag k and 

is defined by 

𝛾௞ ൌ ሺ𝑍௧, 𝑍௧ା௞ሻ ൌ 𝐸ሺ𝑍௧ െ 𝜇ሻሺ𝑍௧ା௞ െ 𝜇ሻ                 (3.6) 

and the correlation between 𝑍௧ and 𝑍௧ା௞ as 

𝜌௞ ൌ ஼௢௩ሺ௓೟ ,௓೟శೖሻ

ඥ௏௔௥ሺ௓೟ሻඥ௏௔௥ሺ௓೟శೖሻ
ൌ ఊೖ

ఊ೚
                (3.7)

   

where 𝑉𝑎𝑟ሺ𝑍௧ሻ ൌ 𝑉𝑎𝑟ሺ𝑍௧ା௞ሻ ൌ 𝛾௢. As function of k, 𝛾௞ is called the autocovariance 

function and 𝜌௞ is called the autocorrelation function (ACF) in time series analysis. 

For a stationary process, the autocovariance function 𝛾௞ and the autocorrelation  

function 𝜌௞ have the following properties. 

  1. 𝛾௢ ൌ 𝑉𝑎𝑟ሾ𝑍௧ሿ, 𝜌௢ ൌ 1 

  2. |𝛾௞| ൑ 𝛾௢, |𝜌௞| ൑ 1 

  3. 𝛾௞ ൌ 𝛾ି௞and𝜌௞ ൌ 𝜌ି௞ for all k 

 4. ∑ 𝑍௧
௡
௜ୀଵ ∑ 𝛼௜ 

௡
௝ୀଵ 𝛼௝ ห𝛾௜௝ െ 𝑡ଵห ൒ 0 

 

3.3.3 Partial Autocorrelation Function 

 The following conditional correlation 

Corr ሺ𝑍௧, 𝑍௧ା௞|𝑍௧ାଵ, … , 𝑍௧ା௞ିଵሻ (3.8) 

is usually referred to as the partial autocorrelation in time series analysis. 

Consider a stationary process ሾ𝑍௧ሿand, this assume that E ሺ𝑍௧ሻ = 0.  

Let the linear dependence of 𝑍௧ା௞ on 𝑍௧ାଵ,𝑍௧ାଶ,....., and 𝑍௧ା௞ିଵ be defined 
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as the best linear estimate in the mean square sense of 𝑍௧ା௞ as linear function  

of 𝑍௧ାଵ, 𝑍௧ାଶ, ....., and 𝑍௧ା௞ିଵ. That is, if 𝑍መ௧ା௞ is the best linear estimate of 𝑍௧ା௞,  

then 

                                  𝑍መ௧ା௞=𝛼ଵ𝑍௧ା௞ିଵ ൅ 𝛼ଶ𝑍௧ା௞ିଶ ൅ ⋯ ൅ 𝛼௞ିଵ𝑍௧ାଵ,                  (3.9) 

 

Where 𝛼ଵሺ1 ൑ 𝑖 ൑ 𝑘 െ 1ሻ are the mean squared linear regression coefficients obtained 

from minimizing 

       Eሺ𝑍௧ା௞ െ 𝑍መ௧ା௞ሻଶ=E(𝑍௧ା௞ െ 𝛼ଵ𝑍௧ା௞ିଵ െ ⋯ െ 𝛼௞ିଵ𝑍௧ାଵሻଶ           (3.10) 

      The routine minimization method through differentiation gives the following  

linear system of equations 

 𝛾௜ ൌ 𝛼ଵ𝛾௜ିଵ ൅ 𝛼ଶ𝛾௜ିଶ൅. … . ൅𝛼௞ିଵ𝛾௜ି௞ାଵ ሺ1 ൑ 𝑖 ൑ 𝑘 െ 1ሻ.                           (3.11)  

  

Hence, 

 𝜌௜ ൌ 𝛼ଵ𝜌௜ିଵ ൅ 𝛼ଶ𝜌௜ିଶ ൅ ⋯ ൅ 𝛼௞ିଵ𝜌௜ି௞ାଵ ሺ1 ൑ 𝑖 ൑ 𝑘 െ 1ሻ.          (3.12) 

In terms of matrix notation, the above system of  (3.11) becomes 

  ቎

𝜌ଵ
𝜌ଶ
⋯

𝜌௞ିଵ

቏ ൌ ൦

1
𝜌ଵ
⋮

𝜌௞ିଶ

𝜌ଵ
1
⋮

𝜌௞ିଷ

𝜌ଶ
𝜌ଵ
⋮

𝜌௞ିସ

⋯
⋯
⋮

⋯

𝜌௞ିଶ
𝜌௞ିଷ

⋮
1

൪ ቎

𝛼ଵ
𝛼ଶ
⋯

𝛼௞ିଵ

቏           (3.13) 

Similarly, 

𝑍መ௧ ൌ 𝛽ଵ𝑍௧ାଵ ൅ 𝛽ଶ𝑍௧ାଶ ൅ ⋯ ൅ 𝛽௞ିଵ𝑍௧ା௞ିଵ                                                            (3.14) 

   

Where 𝛽௜ሺ1 ൑ 𝑖 ൑ 𝑘 െ 1ሻ are the mean squared linear regression coefficients 

obtained by minimizing 

Eሺ𝑍௧ െ 𝑍መ௧ሻଶ = E(𝑍௧ െ 𝛽ଵ𝑍௧ାଵ െ ⋯ െ 𝛽௞ିଵ𝑍௧ା௞ିଵሻଶ                      (3.15) 

    

Hence 

቎

𝜌ଵ
𝜌ଶ
⋯

𝜌௞ିଵ

቏ ൌ ൦

1
𝜌ଵ
⋮

𝜌௞ିଶ   

 𝜌ଵ
 1
 ⋮

𝜌௞ିଷ

  𝜌ଶ
  𝜌ଵ

⋮
    𝜌௞ିସ

 

⋯
⋯
⋮

  ⋯

  𝜌௞ିଶ
 𝜌௞ିଷ

⋮
1

൪ ൦

𝛽ଵ
𝛽ଶ
⋯

𝛽௞ିଵ

൪                            (3.16)

                      

This implies that 𝛼௜ ൌ 𝛽௜ሺ1 ൑ 𝑖 ൑ 𝑘 െ 1ሻ. 
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It follows that the partial autocorrelation between 𝑍௧and 𝑍௧ା௞ will equal the 

ordinary autocorrelation between ൫𝑍௧ െ 𝑍መ௧൯ and൫𝑍௧ା௞ െ 𝑍መ௧ା௞൯. Thus, letting 𝑃௞denote 

the partial autocorrelation between 𝑍௧ and𝑍௧ା௞ , this have 

𝑃௞ ൌ  ஼௢௩ሾሺ௓೟ି  ௓෠೟ሻ,ሺ௓೟శೖି  ௓෠೟శೖሻሿ

ඥ௏௔௥ሺ௓೟ି௓෠೟ሻඥ௏௔௥ሺ௓೟శೖି௓෠೟శೖሻ
                                                 (3.17) 

        

Now, 𝑉𝑎𝑟 ൫𝑍௧ା௞ െ 𝑍መ௧ା௞൯  ൌ 𝐸ሾሺ𝑍௧ା௞ െ 𝛼ଵ𝑍௧ା௞ିଵ െ ⋯ െ 𝛼௞ିଵ𝑍௧ାଵሻଶሿ 

                 ൌ 𝐸ሾ𝑍௧ା௞ሺ𝑍௧ା௞ െ 𝛼ଵ𝑍௧ା௞ିଵ െ ⋯ െ 𝛼௞ିଵ𝑍௧ାଵሻଶሿ 

                                         െ 𝛼ଵ𝐸ሾ𝑍௧ା௞ିଵሺ𝑍௧ା௞ െ 𝛼ଵ𝑍௧ା௞ିଵെ. . . െ𝛼௞ିଵ𝑍௧ାଵሻሿ 

              … െ 𝛼௞ିଵ𝐸ሾ𝑍௧ାଵሺ𝑍௧ା௞ െ 𝛼ଵ𝑍௧ା௞ିଵ െ ⋯ െ 𝛼௞ିଵ𝑍௧ାଵሻሿ 

                                         ൌ 𝐸ሾ𝑍௧ା௞ሺ𝑍௧ା௞ െ 𝛼ଵ𝑍௧ା௞ିଵെ. . . െ𝛼௞ିଵ𝑍௧ାଵሻሿ 

Since all other remaining terms reduce to zero by virtue of equation (3.11). 

Hence, 

𝑉𝑎𝑟൫𝑍௧ା௞ െ 𝑍መ௧ା௞൯ ൌ 𝑉𝑎𝑟൫𝑍௧ െ 𝑍መ௧൯ ൌ 𝛾଴ െ 𝛼ଵ𝛾ଵെ. . . െ𝛼௞ିଵ𝛾௞ିଵ.  (3.18) 

         

Next, using the fact that 𝛼௜ ൌ 𝛽௜ሺ1 ൑ 𝑖 ൑ 𝑘 െ 1ሻ, There have 

𝐶𝑜𝑣ൣ൫𝑍௧ െ 𝑍መ௧൯, ൫𝑍௧ା௞ െ 𝑍መ௧ା௞൯൧  

=𝐸ሾሺ𝑍௧ െ 𝛼ଵ𝑍௧ାଵ െ ⋯ െ 𝛼௞ିଵ𝑍௧ା௞ିଵሻሺ𝑍௧ା௞ െ 𝛼ଵ𝑍௧ା௞ିଵ െ ⋯ െ 𝛼௞ିଵ𝑍௧ାଵሻሿ 

=𝐸ሾሺ𝑍௧ െ 𝛼ଵ𝑍௧ାଵ െ ⋯ െ 𝛼௞ିଵ𝑍௧ା௞ିଵሻ𝑍௧ା௞ሿ 

=𝛾௞ െ 𝛼ଵ𝛾௞ିଵ െ ⋯ െ 𝛼௞ିଵ𝛾ଵ.                                                                                 (3.19)       

Therefore, 

𝑃௞ ൌ ఊೖିఈభఊೖషభି⋯ିఈೖషభఊభ

ఊబିఈభఊభି⋯ିఈೖషభఊೖషభ
ൌ ఘೖିఈభఘೖషభି⋯ିఈೖషభఘభ

ଵିఈభఘభି⋯ିఈೖషభఘೖషభ
.             (3.20) 

Solving the system in (3.13) for 𝛼௜ by Cramer’s rule gives 
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𝛼௜ ൌ

ተ

ଵ
ఘభ
⋮

ఘೖషమ

  ఘభ
 ଵ
⋮

   ఘೖషయ 

⋯ 
⋯
⋮

⋯

 ఘ೔షమ
 ఘ೔షయ

⋮
 ఘೖష೔   

ఘభ
ఘమ
⋮

ఘೖషభ

ఘ೔
ఘ೔షభ

⋮
   ఘೖష೔షమ

 ⋯
 ⋯
⋮

  ⋯

   ఘೖషమ

 
 ఘೖషయ

⋮
ଵ

ተ

ተ

ଵ
ఘభ
⋮

ఘೖషమ   

ఘభ
ଵ
⋮

ఘೖషయ

⋯
⋯
⋮

   ⋯

ఘ೔షమ
ఘ೔షయ

⋮
  ఘ ೖష೔

ఘభ
ఘమ
⋮

   ఘೖష೔షభ  

ఘ೔
ఘ೔షభ

⋮
ఘೖష೔షమ

⋯
⋯
⋮

⋯

ఘೖషమ
ఘೖషయ

⋮
ଵ

ተ

    (3.21)

         

as the ratio of two determinants. The matrix in the numerator is the same as the symmetric 

matrix in the denominator except for its 𝑖௧௛ column being replaced by ሺ𝜌ଵ, 𝜌ଶ, … , 𝜌௞ିଵሻ. 

Substituting 𝛼௜ in (3.21) to equation (3.20) and multiplying both the numerator and 

denominator of (3.20) by the determinant 

ቮ

1
𝜌ଵ
⋮

𝜌௞ିଶ

𝜌ଵ
1
⋮

  𝜌௞ିଷ 

⋯
⋯
⋮

⋯

  𝜌௞ିଶ
 𝜌௞ିଷ

⋮
1

ቮ, 

the resulting 𝑃௞ in (3.20) can be easily seen to equal the ratio of the expansion of the 

following expression in terms of the last column, 

𝑃௞ ൌ

ተ

ଵ
ఘభ
⋮

ఘೖషభ

ఘభ
ଵ
⋮

ఘೖషమ

ఘమ
ఘభ
⋮

ఘೖషయ

⋯
⋯
⋮

⋯

ఘೖషమ
ఘೖషయ

⋮
ఘభ

ఘభ
ఘమ
⋮

ఘೖ

ተ

ተ

ଵ
ఘభ
⋮

ఘೖషభ

ఘభ
ଵ
⋮

ఘೖషమ

ఘమ
ఘభ
⋮

ఘೖషయ

⋯
⋯
⋮

⋯

ఘೖషమ
ఘೖషయ

⋮
ఘభ

ఘభ
ఘమ
⋮
ଵ

ተ

 (3.22) 

The partial autocorrelation can also be derived as follows. Consider the regression 

model, where the dependent variable 𝑍௧ା௞ from a zero mean stationary process is 

regressed on k lagged variables 𝑍௧ା௞ିଵ, 𝑍௧ା௞ିଶ, …, and 𝑍௧, i.e., 

𝑍௧ା௞ ൌ ∅௞ଵ𝑍௧ା௞ିଵ ൅ ∅௞ଶ𝑍௧ା௞ିଶ ൅ ⋯ ൅ ∅௞௞𝑍௧ ൅ 𝑒௧ା௞,     (3.23)    

  

Where ∅௞௜ denotes the 𝑖௧௛ regression parameter and 𝑒௧ା௞ is a normal error term 

uncorrelated with 𝑍௧ା௞ି௝ for 𝑗 ൒ 1. Multiplying 𝑍௧ା௞ି௝ on both sides of the above 

regression equation and taking the expectation, Those get 

𝛾௝ ൌ ∅௞ଵ𝛾௝ିଵ ൅ ∅௞ଶ𝛾௝ିଶ ൅ ⋯ ൅ ∅௞௞𝛾௝ି௞  (3.24) 

and hence, 

             𝜌௝ ൌ ∅௞ଵ𝜌௝ିଵ ൅ ∅௞ଶ𝜌௝ିଶ ൅ ⋯ ൅ ∅௞௞𝜌௝ି௞ (3.25)   
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For j=1,2,…,k , Those have the following system of equations: it can be written as follows 

𝜌ଵ ൌ  ∅௞ଵ𝜌଴ ൅  ∅௞ଶ𝜌ଵ ൅ ⋯ ൅ ∅௞௞𝜌௞ିଵ 

𝜌ଶ ൌ  ∅௞ଵ𝜌ଵ ൅ ∅௞ଶ𝜌଴ ൅ ⋯ ൅  ∅௞௞𝜌௞ିଶ 

      ⋮ 

𝜌௞ ൌ  ∅௞ଵ𝜌௞ିଵ ൅  ∅௞ଶ𝜌௞ିଶ ൅ ⋯ ൅ ∅௞௞𝜌଴ 

Using Creamer’s rule successively for k = 1,2, …, 

∅ଵଵ ൌ 𝜌ଵ 

∅ଶଶ ൌ
ฬ

1 𝜌ଵ
𝜌ଵ 𝜌ଶ

ฬ

ฬ
1 𝜌ଵ
𝜌ଵ 1 ฬ

 

∅ଷଷ ൌ

อ
1 𝜌ଵ 𝜌ଵ
𝜌ଵ 1 𝜌ଶ
𝜌ଶ 𝜌ଵ 𝜌ଷ

อ

อ
1 𝜌ଵ 𝜌ଶ
𝜌ଵ 1 𝜌ଵ
𝜌ଶ 𝜌ଵ 1

อ

 

    ⋮ 

∅௞௞ ൌ

ተ

ଵ
௉భ
⋮

௉ೖషభ

௉భ
ଵ
⋮

௉ೖషమ

௉మ
௉భ
⋮

௉ೖషయ

⋯
⋯
⋮

⋯

௉ೖషమ
௉ೖషయ

⋮
௉భ

௉భ
௉మ
⋮

௉ೖ

ተ

ተ

ଵ
௉భ
⋮

௉ೖషభ

௉భ
ଵ
⋮

௉ೖషమ

௉మ
௉భ
⋮

௉ೖషయ

⋯
⋯
⋮

⋯

௉ೖషమ
௉ೖషయ

⋮
௉భ

௉ೖషభ
௉ೖషమ

⋮
ଵ

ተ

                                   (3.26) 

 

Comparing Equation (3.26) with (3.22), it can be seen that ∅௞௞ equals 𝜌௞. Thus, the 

partial autocorrelation between 𝑍௧ and 𝑍௧ା௞ can also be obtained as the regression 

coefficient associated with  𝑍௧ in (3.23). Because ∅௞௞ has becomes a standard notation 

for the partial autocorrelation between 𝑍௧ and 𝑍௧ା௞ in time series. As a function of k, 

∅௞௞is usually referred to as the partial autocorrelation function (PACF) in time series 

analysis. 

 

3.3.4 White Noise Processes 

 In process {𝑎௧}is called a white noise process if it is a sequence of uncorrelated 

random variables from a fixed distribution with constant mean E(𝑎௧) = 𝜇௔ , assumed to 
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be 0, constant variance Var (𝑎௧) = 𝜎௔
ଶ  and  𝛾௞ = Cov (𝑎௧, 𝑎௧ା௞ ) = 0 for all k ് 0. A white 

noise process {𝛼௧} is stationary with the autocovariance function 

  𝛾௞= ൜
𝜎௔,

ଶ

0,
            ௞ୀ଴,
            ௞ஷ଴,                                                (3.27) 

The autocorrection function 

  𝜌௞= ቄ
1
0, 

           ௞ୀ଴,
            ௞ஷ଴,                                                 (3.28) 

The partial autocorrection function ∅௞௞= ቄ
1
0, 

           ௞ୀ଴,
            ௞ஷ଴,                                          (3.29) 

              

By definition 𝜌଴ = ∅଴଴ =1 for any process, when the autocorrection and partial 

auto correlations, refer only to 𝜌௞ and ∅௞௞ for 𝑘 ് 0 . The basic phenomenon of the white 

noise process is that ACT and PACT are identically equal to zero. 

 

3.4 Autoregressive Processes 

 Based on a finite number of available observations, a finite order parametric 

model was constructed to describe a time series process. In this chapter, the 

autoregressive modes were described as a special case. These models are useful in 

describing a wide variety of time series. The characteristics of each process in terms of 

autocorrelation and partial autocorrelation functions will also be discussed in this section. 

 In time series analysis, there are two useful representations to express a time 

series process. The first one is to write a process 𝑍መ௧ in an autoregressive (AR) 

representation, in which regress the value of 𝑍መ at time t on its own past values plus a 

random shock, i.e., 

𝑍መ௧ ൌ 𝜋ଵ𝑍መ௧ିଵ ൅ 𝜋ଶ𝑍መ௧ିଶ ൅ ⋯ ൅ 𝑎௧  (3.30) 

      

or equivalently, 

 

                    𝜋ሺ𝐵ሻ𝑍መ௧ ൌ 𝑎௧      (3.31) 

where 𝜋ሺ𝐵ሻ ൌ 1 െ ∑ 𝜋௝𝐵௝,ஶ
௝ୀଵ  and 1+∑ ห𝜋௝หஶ

௝ୀଵ ൏ ∞. The autoregressive representation is 

a very useful model for the mechanism of forecasting. In the autoregressive 

representation of a process, if only a finite number of 𝜋 weights are nonzero, i.e., 𝜋ଵ ൌ

∅ଵ, 𝜋ଶ ൌ ∅ଶ, … , 𝜋௣ ൌ ∅௣ and 𝜋௞ ൌ 0 for k ൐ p, then the resulting process is said to be an 

autoregressive process (model) of order p, which is denoted as AR (p). It is given by  
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𝑍መ௧ ൌ ∅ଵ𝑍መ௧ିଵ ൅ ∅ଶ𝑍መ௧ିଶ ൅ ⋯ ൅ ∅௣𝑍መ௧ି௣ ൅ 𝑎௧             (3.32)

  

∅௣ሺ𝐵ሻ𝑍መ௧ ൌ 𝑎௧, (3.33) 

or 

where ∅௣ሺ𝐵ሻ ൌ ሺ1 െ ∅ଵ𝐵 െ ⋯ െ∅௣𝐵௣ሻ, 𝑎ො௧ ൌ  𝑎௧ െ 𝜇 and 𝑎௧ is random error or 

disturbance term. Since ∑ ห𝜋௝หஶ
௝ୀଵ ൌ ∑ ห∅௝หஶ

௝ୀଵ ൏ ∞ , the process is always invertible. To 

be stationary, the roots of ∅௣ (B) = 0 must lie outside of the unit circle. 

 The AR processes are useful in describing situations in which the present value 

of a time series depends on its preceding values plus a random shock. First, consider the 

following simple autoregressive models. 

 

3.4.1  The General 𝒑𝒕𝒉 Order Autoregressive AR (𝒑) Process 

The 𝑝௧௛order autoregressive process AR (𝑝) is 

൫1 െ ∅ଵ𝐵 െ ∅ଶ𝐵ଶെ ⋯ െ ∅௣𝐵௣൯𝑍መ௧ ൌ 𝑎௧   (3.34) 

or 

𝑍መ௧ ൌ ∅ଵ𝑍መ௧ିଵ ൅ ∅ଶ𝑍መ௧ିଶ ൅ ⋯ ൅ ∅௣𝑍መ௧ି௣𝑎௧  

   (3.35) 

(a) Autocovariance Function of General AR (p) Process 

To find the autocovariance function, both sides of equation (3.33) is multiply by 

𝑍መ௧ି௞ 

𝑍መ௧ି௞𝑍መ௧ ൌ ∅௧𝑍መ௧ି௞𝑍መ௧ିଵ ൅ ⋯ ൅ ∅௣𝑍መ௧ି௞𝑍መ௧ି௣ ൅ 𝑍መ௧ି௞𝛼௧ 

and take the expected value 

            𝛾௞ ൌ ∅ଵ𝛾௞ିଵ ൅ ⋯ ൅ ∅௣𝛾௞ି௣    ́         k ൐ 0, 

where E (𝑎௧𝑍௧ି௞ሻ = 0 for k ൐ 0. 

 

(b) Autocorrelation Function of General AR(p) Process 

 The following recursive relationship for the autocorrelation function; 

𝜌௞ ൌ ∅ଵ𝜌௞ିଵ ൅ ∅ଶ𝜌௞ିଶ ൅ ⋯ ൅ ∅௣𝜌௞ି௣́,       k ൐ 0,  (3.36) 

      

From (3.32), the ACF 𝜌௞ is determined by the difference equation 

∅௣ሺ𝐵ሻ𝜌௞ ൌ ൫1 െ ∅ଵ𝐵 െ ∅ଶ𝐵ଶെ ⋯ െ ∅௣𝐵௣൯𝜌௞ ൌ 0 for k ൐ 0. Hence, it can be written 

as 
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∅௣ሺ𝐵ሻ ൌ ෑሺ1 െ 𝐺௜𝐵ሻௗ೔,

௠

௜ୀଵ

 

where ∑ 𝑑௜
௠
௜ୀଵ ൌ 𝑝, and 𝐺௜

ିଵ(i = 1, 2, ...,m) are the roots of multiplicity 𝑑௜ of ∅௣ሺ𝐵ሻ ൌ 0.  

Using the difference equations results, as follows, 

𝜌௞ ൌ ∑ 𝐺௜
௞௠

௜ୀଵ ∑ 𝐴௜௝𝑘௝ௗ௜ିଵ
௝ୀ଴    (3.37)

  

If 𝑑௜ ൌ 1 for all i, then 𝐺௜
ିଵ, are all distinct and the above reduces to 

𝜌௞ ൌ ∑ 𝐴௜𝐺௜
௞௣

௜ୀଵ k ൐ 0  (3.38) 

For a stationary process,ห𝐺௜
ିଵห ൐ 1 and |𝐺௜| ൏ 1. Hence, the ACF 𝜌௞ tails off as a mixture 

of exponential decays or damped sine waves depending on the roots of ∅௣ሺ𝐵ሻ ൌ 0. 

Damped sine waves appear if some roots are complex. 

 

(c) Partial Autocorrelation Function of General AR (p) Process 

By using the fact that 𝜌௞ ൌ ∅ଵ𝜌௞ିଵ ൅ ∅ଶ𝜌௞ିଶ ൅ ⋯ ൅ ∅௣𝜌௞ି௣ for k ൐ 0, it can 

obviously be seen that when k ൐ p the last column of the matrix in the numerator of ∅௞௞ 

in (3.26) can be written as linear combination of previous column of the same matrix. 

Hence, the PACF ∅௞௞ will vanish after lag p.  

 

3.5 Moving Average Processes 

 In the moving average representation of a process, if only a finite number of 𝜓 

weights are nonzero, that 𝜓ଵ ൌ െ𝜃ଵ, 𝜓ଶ ൌ െ𝜃ଶ, . . . , 𝜓௤ ൌ െ𝜃௤ and 𝜓௞ ൌ 0 for k ൐q, 

then the resulting process is said to be a moving average process or model of order q and 

is denoted as MA (q). It is given by 

𝑍መ௧ ൌ 𝑎௧ െ 𝜃ଵ𝑎௧ିଵ െ 𝜃ଵ𝑎௧ିଶ െ ⋯ െ 𝜃௤𝑎௧ି௤ (3.39) 

Or 

𝑍መ௧ ൌ 𝜃ሺ𝐵ሻ𝑎ଵ; 

Where 

 𝜃ሺ𝐵ሻ ൌ ሺ1 െ 𝜃ଵ𝐵 െ 𝜃ଶ𝐵ଶ െ … െ ∅௤𝐵௤ሻ. 

Because 1 ൅ 𝜃ଵ
ଶ ൅ 𝜃ଶ

ଶ ൅ ⋯ ൅ 𝜃௤
ଶ ൏ ∞, a finite moving average process is always 

stationary. This moving average process is invertible if the roots of 𝜃ሺ𝐵ሻ ൌ 0 lie outside 

of the unit circle. Moving average processes are useful to describe a phenomena in which 

events produce an immediate effect that only lasts for only short periods of time. To 
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discuss other properties the MA(q) process, let us first consider the following simpler 

cases. 

 

3.5.1  The General 𝒒𝒕𝒉 Order Moving Average MA (𝒒) Process 

 The general 𝑞௧௛order moving average process is  

𝑍መ௧ = (1 െ 𝜃ଵ𝐵 െ 𝜃ଶ𝐵ଶ െ ⋯ െ 𝜃௤𝐵௤ሻ 𝑎௧,  (3.40)

  

For this general MA(q) process, the variance is 

𝛾଴ ൌ 𝜎௔
ଶ ෍ 𝜃௝

ଶ

௤

௝ୀ଴

, 

where 𝜃଴ ൌ 1, then the additional autocovariances are  

𝛾௞ ൌ ൜𝜎௔
ଶ

0,
ሺെ𝜃௞ ൅ 𝜃ଵ𝜃௞ାଵ ൅ ⋯ ൅ 𝜃௤ି௞𝜃௤ሻ

ൠ
             𝑘 ൌ 1, 2, … , 𝑞,

𝑘 ൐ 𝑞            (3.41) 

Therefore, the autocorrelations function are 

𝜌௞ ൌ ൝
ିఏೖ ା ఏభఏೖశభ ା⋯ା ఏ೜షೖఏ೜ሻ

    ଵ ା ఏభ
మ ା⋯ା ఏ೜

మ ൡ
             𝑘 ൌ 1, 2, … , 𝑞,

𝑘 ൐ 𝑞  

 The autocorrelation function of an MA(q) process cuts off after lag q. This 

important property enables us to identify whether a given time series is generated by a 

moving average process. 

 

3.5.2 Dual Relationship Between AR (p) and MA(q) Process 

Given that stationary AR(p) process,  

 ∅௣ሺ𝐵ሻ𝑍መ௧ ൌ 𝑎௧,               (3.42) 

Where ∅௣ሺ𝐵ሻ ൌ 1 െ ∅ଵ𝐵 െ ⋯ െ ∅௣𝐵௣, it can write 

𝑍መ௧ ൌ  ଵ

∅೛ሺ஻ሻ
𝑎௧ ൌ  𝜓ሺ𝐵ሻ𝑎௧  (3.43)

  

With 𝜓ሺ𝐵ሻ ൌ  ሺ1 ൅ 𝜓ଵ𝐵 ൅ 𝜓ଶ𝐵ଶ ൅ ⋯ ሻ such that 

   ∅௣ሺ𝐵ሻ𝜓ሺ𝐵ሻ ൌ 1             (3.44) 

The 𝜓 weights can be derived by equating the coefficients of Bj  

on both sides of (3.40).  

An example, this can write the AR (2) process as per 

0, 
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  𝑍መ௧ ൌ  ଵ

ሺଵି ∅భ஻ି ∅మ஻మሻ 𝑎௧ ൌ  ሺ1 ൅ 𝜓ଵ𝐵 ൅ 𝜓ଶ𝐵ଶ ൅ ⋯ ሻ 𝑎௧,            (3.45) 

        

Which implies that 

  ሺ1 ൅ 𝜓ଵ𝐵 ൅ 𝜓ଶ𝐵ଶሻሺ1 ൅ 𝜓ଵ𝐵 ൅ 𝜓ଶ𝐵ଶ ൅ 𝜓ଶ𝐵ଷ ൅ ⋯ ሻ ൌ 1, 

Thus, it obtain the 𝜓௝
ᇱ𝑠 as follows: 

  B1 :   𝜓ଵ െ ∅ଵ ൌ 0 ⟶  𝜓ଵ ൌ  ∅ଵ  

B2 :             𝜓ଶ െ 𝜓ଵ ∅ଵ െ ∅ଶ  ൌ 0 ⟶  𝜓ଶ ൌ  𝜓ଵ∅ଵ ൅ ∅ଶ ൌ  ∅ଵା
ଶ  ∅ଶ 

B3 :  𝜓ଷ െ 𝜓ଶ ∅ଵ െ 𝜓ଵ ∅ଶ െ ∅ଶ  ൌ 0 ⟶  𝜓ଷ ൌ  𝜓ଶ∅ଵ ൅ 𝜓ଵ∅ଶ 

                            ⋮ 

In fact, for j ൒ 2, it has 

   𝜓௝ ൌ 𝜓௝ିଵ∅ଵ ൅ 𝜓௝ିଶ∅ଶ,               (3.46) 

Where 𝜓଴ ൌ 1. In a special case when ∅ଶ = 0, it has 𝜓௝ ൌ  ∅ଵ 
௝ , j ൒ 0. Therefore,  

  𝑍መ௧ ൌ  ଵ

ሺଵି ∅భ஻ሻ
𝑎௧ ൌ  ሺ1 ൅ ∅ଵ𝐵 ൅ ∅௜

ଶ𝐵ଶ ൅ ⋯ ሻ 𝑎௧,                            (3.47) 

This equation implies that a finite order stationary AR process is equivalent to an infinite 

order MA process. 

 Given that its general invertible MA(q) process, 

  

𝑍መ௧ ൌ 𝜃௤ሺ𝐵ሻ𝑎௧    (3.48) 

with ∅௤ሺ𝐵ሻ ൌ ሺ1 െ ∅ଵ𝐵 െ ⋯ െ ∅௤𝐵௤ሻ, this can rewrite it as  

 

 

𝜋ሺ𝐵ሻ𝑍መ௧ ൌ  ଵ

ఏ೜ሺ஻ሻ
𝑍መ௧ ൌ  𝑎௧,  (3.49)

                                

Where,  𝜋ሺ𝐵ሻ ൌ ሺ1 െ 𝜋ଵ𝐵 െ 𝜋ଶ𝐵ଶ െ ⋯ ሻ= 
ଵ

ఏ೜ሺ஻ሻ
   (3.50)

  

Therefore, the 𝜋 weights can be derived by equation the coefficients of Bj as follows: 

  B1 :    𝜋ଵ െ ∅ଵ ൌ 0 ⟶  𝜋ଵ ൌ  ∅ଵ  

B2 :   െ 𝜋ଶ െ 𝜋ଵ∅ଵ െ ∅ଶ  ൌ 0 ⟶  𝜋ଶ ൌ  𝜋ଵ∅ଵ ൅ ∅ଶ ൌ  െ∅ଵା
ଶ  ∅ଶ 

B3 :  െ𝜋ଷ െ 𝜋ଶ ∅ଵ െ 𝜋ଵ ∅ଶ െ ∅ଶ  ൌ 0 ⟶  𝜋ଷ ൌ  𝜋ଶ∅ଵ ൅ 𝜋ଵ∅ଶ 

In general,  
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 𝜋௝ ൌ  𝜋௝ିଵ𝜃ଵ ൅ ∅ଶ ൌ  𝜋௝ିଶ𝜃ଵ , for j ൒ 3.              

 (3.51) 

When 𝜃ଶ = 0 and the process becomes the MA (1) process, this have 𝜃ଵ 
௝  for j ൒ 1, 

ሺ1 ൅ ∅ଵ𝐵 ൅ ∅௜
ଶ𝐵ଶ ൅ ⋯ ሻ𝑍መ௧ ൌ  ଵ

ሺଵି ∅భ஻ሻ
 𝑍መ௧ ൌ  𝑎௧  (3.52) 

                       

Hence, in term of the AR representation, a finite-order invertible MA process is 

equivalent to an infinite-order AR process.  

 In summary, this dual relationship between the AR(p) and the MA(q) processes 

also exits in the autocorrelation and partial autocorrelation functions. The AR(p) process 

has its autocorrelations tailing off and partial autocorrelations cutting off, but the MA(q) 

process has its autocorrelations cutting off and partial autocorrelation tailing off. 

 

3.6 Autoregressive Moving Average ARMA ሺ𝒑, 𝒒ሻProcesses 

The following useful mixed autoregressive moving average ARMA 

ሺ𝑝, 𝑞ሻ processes 

                      ∅௣ሺ𝐵ሻ𝑍መ௧ ൌ 𝜃௤ሺ𝐵ሻ𝑎௧,  (3.53) 

where, 

∅௣ሺ𝐵ሻ ൌ 1 െ ∅ଵ𝐵 െ ⋯ െ ∅௣𝐵௣, 

and  

𝜃௤ሺ𝐵ሻ ൌ 1 െ 𝜃ଵ𝐵 െ ⋯ െ 𝜃௤𝐵௤. 

For the process to be invertible, it requires that the roots of 𝜃௤ሺ𝐵ሻ ൌ 0 lie outside the unit 

circle. To be stationary, it requires that the roots of ∅௣ሺ𝐵ሻ ൌ 0 lie outside the unit circle. 

Assuming that ∅௣ሺ𝐵ሻ ൌ 0 and 𝜃௤ሺ𝐵ሻ ൌ 0 share no common roots, this process refers to 

an ARMA (p, q) process or model, in which p and q are used to indicate the orders of the 

associated autoregressive and moving average polynomials, respectively. 

 The stationary and invertible ARMA process can be written in a pure 

autoregressive representation discussed in Section (3.5), i.e., 

𝑍መ௧ ൌ 𝜓ሺ𝐵ሻ𝑎௧ 

where, 

                                                         𝜓ሺ𝐵ሻ ൌ
ఏ೜ሺ஻ሻ

∅೛ሺ஻ሻ
ൌ ሺ1 ൅ 𝜓ଵ𝐵 ൅ 𝜓ଶ𝐵ଶ ൅ ⋯ ሻ. 

Autocorrelation Function of the ARMA (p, q) Process: To derive the autocorrelation 

function, the equation (3.37) is rewritten as 
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𝑍መ௧ ൌ ∅ଵ𝑍መ௧ିଵ ൅ ⋯ ൅ ∅௣𝑍መ௧ି௣ ൅ 𝑎௧ െ 𝜃ଵ𝑎௧ିଵ െ ⋯ െ 𝜃௤𝑎௧ି௤ 

and multiplied by 𝑍መ௧ି௞ on both sides 

𝑍መ௧ି௞𝑍መ௧ ൌ ∅ଵ𝑍መ௧ି௞𝑍መ௧ିଵ ൅ ⋯ ൅ ∅௣𝑍መ௧ି௞𝑍መ௧ି௣ ൅ 𝑍መ௧ି௞𝑎௧ െ 𝜃ଵ𝑍መ௧ି௞𝑎௧ିଵ െ ⋯ െ 𝜃௤𝑍መ௧ି௞𝑎௧ି௤ 

Now we take the expected value to obtain 

𝛾௞ ൌ ∅ଵ𝛾௞ିଵ ൅ ⋯ ൅ ∅௣𝛾௞ି௣ ൅ 𝐸൫𝑍መ௧ି௞𝑎௧൯ െ 𝜃ଵ𝐸൫𝑍መ௧ି௞𝑎௧ିଵ൯ െ ⋯ െ 𝜃௤𝐸൫𝑍መ௧ି௞𝑎௧ି௤൯. 

Because 

𝐸൫𝑍መ௧ି௞𝑎௧ି௜൯ ൌ 0                             𝑓𝑜𝑟 𝑘 ൐ 𝑖, 

This have  

𝛾௞ ൌ ∅ଵ𝛾௞ିଵ ൅ ⋯ ൅ ∅௣𝛾௞ି௣            𝑘 ൒ ሺ𝑞 ൅ 1ሻ    (3.54) 

and hence, 

𝜌௞ ൌ ∅ଵ𝜌௞ିଵ ൅ ⋯ ൅ ∅௣𝜌௞ି௣               𝑘 ൒ ሺ𝑞 ൅ 1ሻ    (3.55) 

 

Equation (3.55) satisfies the pth order homogeneous difference equation given for the 

AR(p) process. Thus, the autocorrelation function of an ARMA (p, q) model tails off 

after lag q just like an AR(p) process, which depends only on the autoregressive 

parameters in the model. However, the first q autocorrelations 𝜌௤, 𝜌௤ିଵ, … , 𝜌ଵdepend on 

both autoregressive and moving average parameters in the model and serve as initial 

value for the pattern. This distinction is useful for model identification. 

 

Partial Autocorrelation Function of the ARMA (p, q) Process: As the ARMA process 

contains the MA process as a special case, its PACF will also be a mixture of exponential 

decays and/or damped sine waves depending on the roots of ∅௣ (B) = 0 and 𝜃௤ (B) = 0. 

 

Non-Stationary Processes 

 In previous section the stationary processes have been discussed. However, many 

applied time series, particularly those arising from economic and business areas, are non-

stationary. With respect to the class of covariance stationary processes, non-stationary 

time series can occur in many different ways. They could have non-constant means 𝜇ଵ, 

time varying second moments such as nonconstant variance 𝜎௧
ଶ, or have both of these 

properties. 
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3.7 Autoregressive Integrated Moving Average (ARIMA) 

A statistical technique that uses time series data to predict future. The parameters 

used in the ARIMA is (p, d, q) which refers to the autoregressive, integrated and moving 

average parts of the data set, respectively. ARIMA modeling will take care of trends, 

seasonality, cycles, errors and non-stationary aspects of a data set when making 

forecasts. There is no other univariate forecasting method has been more widely 

discussed than ARIMA model can be defined as  

                 ∅௉ሺ1 െ 𝐵ሻௗ𝑍௧ ൌ ∅ሺ𝐵ሻ∇ௗ𝑍௧ ൌ 𝜃଴ ൅ 𝜃ሺ𝐵ሻ𝑎௧    (3.56) 

Where 

∅௣ሺ𝐵ሻ ൌ 1 െ ∅ଵ െ ∅ଶ𝐵ଶ െ ⋯ െ ∅௣𝐵௣ 

𝜃௤ሺ𝐵ሻ ൌ 1 െ 𝜃ଵ െ 𝜃ଶ𝐵ଶ െ ⋯ െ 𝜃௤𝐵௤ 

In what follows: 

1. ∅௣ (B) will be called the autoregressive operator: it is assumed to be stationary, 

that is, the roots of ∅௣ (B) =0 lie outside the unit circle. 

2. ሺ1 െ 𝐵ሻௗ ൌ ∅ (B) ∇ௗwill be called the generalized autoregressive operator: it is 

a nonstationary operator with d of roots of ሺ1 െ 𝐵ሻௗ ൌ 0equal to unity. 

3. 𝜃௤ሺ𝐵ሻwill be called the moving average operator; it is assumed to be invertible, 

that is, the roots of 𝜃௤ሺ𝐵ሻ=0 lie outside the unit circle. 

Where d = 0, the model (3.40) represents a stationary process. The requirements of 

stationary and invertibility apply independently, and in general, the operators 

∅௣ሺ𝐵ሻand 𝜃௤ሺ𝐵ሻ will not be of the same order. 

 

3.8 Seasonal Autoregressive Integrated Moving Average, SARIMAሺ𝐩, 𝐝, 𝐪ሻ ൈ

ሺ𝐏, 𝐃, 𝐐ሻ𝒔 Model 

The ARIMA model is for non-seasonal non-stationary data. Box and Jenkins have 

generalized this model to deal with seasonality. The theoretical justification for modeling 

univariate time series as seasonal ARIMA processes is founded in the time series theorem 

known as the world decomposition, which applies to discrete time data series that are 

stationary about their mean and variance. Therefore, it is also necessary to support an 

assertion that an appropriate seasonal difference will induce stationarity. 
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The generalized form of SARIMA ሺp, d, qሻ ൈ ሺP, D, Qሻ௦ model can be written as: 

∅௣ሺ𝐵௦ሻ∅௉ሺ𝐵ሻሺ1 െ 𝐵ሻௗሺ1 െ 𝐵௦ሻ஽𝑍௧ ൌ 𝜃௤ሺ𝐵ሻ𝜃ொሺ𝐵௦ሻ𝑎௧  (3.57) 

Where: 

∅௣ሺ𝐵ሻ ൌ 1 െ ∅ଵ𝐵 െ ∅ଶ𝐵ଶ െ ⋯ െ ∅௣𝐵௣ 

∅௉ሺ𝐵௦ሻ ൌ 1 െ ∅ଵ𝐵 െ ∅ଶ𝐵ଶ െ ⋯ െ ∅௉𝐵௉ 

𝜃௤ሺ𝐵ሻ ൌ 1 െ 𝜃ଵ𝐵 െ 𝜃ଶ𝐵ଶ െ ⋯ െ 𝜃௤𝐵௤ 

𝜃ொሺ𝐵௦ሻ ൌ 1 െ 𝜃ଵ𝐵 െ 𝜃ଶ𝐵ଶ௦ െ ⋯ െ 𝜃ொ𝐵ொ௦ 

Where: 

𝑝, 𝑑, 𝑎𝑛𝑑 𝑞are the order of non-seasonal AR, differencing and MA respectively. 

𝑃, 𝐷, 𝑎𝑛𝑑 𝑄is the order of seasonal AR, differencing and MA respectively. 

𝑍௧ representstime series data at period t. 
B represents backshift operator defined by 𝐵𝑍௧ ൌ 𝑍௧ିଵ. 

ሺ1 െ 𝐵ሻௗ represents non-seasonal difference. 

ሺ1 െ 𝐵௦ሻௗ represents seasonal difference. 

s represents seasonal order (s=12 for monthly data) 

𝑎௧represents white noise process at period t. It is identically and normally distributed 

with mean zero, variance 𝜎ଶ; and 𝑐𝑜𝑣 ሺ𝑒௧, 𝑒௧ି௞ሻ ൌ 0∀𝑘 ് 0, that is, ሼ𝑒௧ሽ~𝑊𝑁 ሺ0, 𝜎ଶሻ. 

From a practical perspective, fitted seasonal ARIMA models provide linear state 

transition equations that can be applied recursively to produce single and multiple 

interval forecasts. Furthermore, seasonal ARIMA models can be readily expressed in 

state space form, thereby allowing adaptive Kalman filtering techniques to be employed 

to provide a self-tuning forecast model. 

 

3.9 Seasonal time series  

A time series have an important seasonal component such as the monthly or 

quarterly series. A time series is periodic with period s when similarity in the series 

occurs of after s basic time intervals. Basic time interval means one month in monthly 

time series and the period is s=12. It means one quarter in quarterly time series and the 

period is s = 4. In some series, there can be more than one period. Thus, in a weekly time 

series, there can be a period of s = 4 and a period of s = 12.  

Monthly or quarterly time series may show seasonal effects within years. Seasonality 

means a tendency to repeat a pattern of behavior over a seasonal period, generally one 

year. Seasonal series are characterized by a display of strong serial correlation at a 
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seasonal lag, that is, the lag corresponding to the number of observations per seasonal 

lag. 

Seasonal time series usually display time to time (for example, month to month) 

changes over the years, showing also within year variations. It is useful to understand the 

actual situation and is used for short term planning. For example, if the data represent the 

daily sales of a large restaurant, a considerable variation may be noticed depending on 

the day of the week. Another example, the publisher of the monthly magazine, may be 

concerned with monthly variations in sales throughout of the year. The restaurant owner 

is concerned with the day of the week that is involved. The publisher of a monthly 

magazine is concerned with which month of the year is involved. The restaurant’s week-

end sales are usually higher than the other sales. The seasonal cycle for the restaurant is 

a week and the days of the week are seasons. For a monthly magazine publisher, months 

are the seasons and a year is a seasonal cycle. 

 

3.10 Test of Seasonality 

There are two main reasons of isolating the seasonal component or element.  

(i) to study seasonal variations 

(ii) to eliminated them. 

 In study the second component of time series, namely seasonal component, test 

of seasonal can be carried out before computing the seasonal indices from the given time 

series data.  

In the study of seasonality, seasonal variation for each month of the year is usually 

considered. As such, the following statistical model is employed 

yij = µ + ai + bj + eij ; 1 ≤ i ≤ n , 1 ≤ j ≤ k 

Where ,  µ = general mean/ unknown constant 

  ai = effect of ith year (i = 1, 2, 3, …, n)  

bj = effect of jth month (j = 1, 2, 3, …, n) 

eij = random error 

yij = observed value of y at jth month of ith year. 

Hence, it is assumed that eij are independently and normally distributed 

with mean zero and constant variance ϭ2. 

  i.e.  eij ~ IN (0, ϭ2) 

In general, this test,  

H0 : b1 = b2 = … = b12  = 0 
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There exist no monthly effects. I.e. bj is zero or there is no seasonality.  

H1 : At least one bj is not equal to zero. 

There exists monthly effect and there is seasonality.  

These employ test that is obtained from the following computation 

procedure and analysis of variance (ANOVA) table shown below.  

SST = Total Sum of Square = ∑i∑ijyij
2 – (C.T) 

SSM = Sum of Square due to months = 
ଵ

௡
 ∑ 𝑅ଵଶ

௝ୀଵ j
2 – (C.T)  

SSY = Sum of Square due to years = 
ଵ

ଵଶ
 ∑ 𝐶௡

௜ୀଵ j
2 – (C.T)  

SSE = Error Sum of Squares = SST – SSM – SSY 

Where C.T = G2/nk, G = ∑ ∑ 𝑦௞
௝ୀଵ

௡
௜ୀ௢ ij = Grand Total 

After computation of SST, SSM, SSU and SST – SSM – SSY, the 

following ANOVA table is constructed.  

Table (3.10) ANOVA for a Two-way Analysis of Variance  

Source 
Sum of 

Square

Degree of 

Freedom 
Mean Square F-Ratio 

Due to Months 

Due to Years 

Error 

SSM 

SSY 

SSE 

k-1 

n-1 

(n-1)(k-1) 

MSM = SSM / k-1 

MSY  = SSY / n-1 

MSE  = SSE / (n-1)(k-1) 

F1= MSM/MSE 

F2= MSY/MSE 

Total  SST  kn‐1  

 

At 100 α % level of significant, the critical value from the F table for the degree of 

freedom (k-1) and (k-1) (n-1) is given by, K= Fα(k-1)(k-1)(n-1). 

If F ≥ K, reject H0 and it is decided that there exists seasonality. 

If F < K, accept H0 and it is decided that there exists no seasonality. 

3.11 Seasonal Index  

Seasonal variation is measured in terms of an index, called a seasonal index. It is 

an average that can be used to compare an actual observation relative to what it would be 

if there were no seasonal variation. An index value is attached to each period of the time 

series within a year. This implies that if monthly data are considered there are 12 separate 

seasonal indices, one for each month. There exist different methods for measuring the 
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seasonal variation of a time series. The methods have been developed to meet different 

objectives of estimating seasonal and the assumed models of the time series. The seasonal 

pattern itself is important in the application of these methods since most of the methods 

assume that the seasonal pattern is constant or stable. In finding the index of seasonal 

variation as seasonal measures, it should be noted that the index must (a) Measure all the 

variation is the series that is seasonal in character, and (b) Measure nothing but the 

seasonal variation A seasonal index thus consists of a series of percentage figures, 

averaging 100, which shows the relative level of the series for the various months, 

quarters or weeks of the year. An index of seasonal variation can be constructed by 

expressing each item in the time series as a percent of the average monthly or quarterly 

value for the year. 

 

Ratio to Moving Average Method  

 Seasonal indices are calculated so that their average is 1. This means that the sum 

of the seasonal indices equals the number of seasons. The steps for the computation of 

the seasonal index by the Ratio to Moving Average method are shown as below. (Steiner, 

1956) 1. Find the twelve months centered moving averages. This is equivalent to a 

moving average of thirteen months with weights (1,2,2, … , 2,2,1) By finding twelve 

months centered moving averages, we eliminate the seasonality, since the seasonal 

pattern is periodic with a period of twelve months. Also, it will eliminate the random 

component or irregular movements. Therefore, the centered twelve month moving 

averages are the approximates of trend and cyclical components. 2. Compute the ratio to 

moving average values, that is, the original data is divided by its appropriate moving 

average value. There, the first and last six months may not be obtained. By this step, the 

trend and cyclical components are removed from the original data and the ratios are the 

values due to seasonal and random components. They are called specific seasonal. 

(Steiner, 1956) 3. Compute the averages of these ratios referring to the same months. 

These averages are the crude seasonal index values. This step involves two different 

purposes: the elimination of the random components and averaging the seasonal relatives 

referring to the same months. 4. Adjust the crude seasonal index. In multiplicative mode, 

the total seasonal index values have to be equal to twelve (or 1200 percent) for monthly 

series. Therefore, the crude seasonal index is adjusted to get a total of twelve (or 1200 

percent). 
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3.12 Box-Jenkins Methodology 

The Box – Jenkins methodology has been expressed steps for model 
identification, method of estimation of the parameters in the ARIMA models, diagnostic 
checking and forecasting. 

3.12.1 Model Identification 

In time series analysis, the most crucial steps are to identify and build a model based 

on the available data.  

(1െ ∅ଵ𝐵 െ ⋯ െ ∅ଵ𝐵௣)(1-B)d𝑍௧ ൌ 𝜃଴ + (1-𝜃ଵ𝐵 െ ⋯ െ 𝜃௤𝐵௤ሻ𝑎௧ 

Model identification refers to the methodology in identifying the required 

transformations. The following useful steps will be used to identify a tentative model for 

a given time series. 

(1) Plot the time series data and choose proper transformations. 

(2) Compute and examine the sample ACF and sample PACF of the original series 

to further confirm a necessary degree of differencing. Some general rules are; 

If the sample ACF decays very slowly, (the individual ACF may not be large) 

and the sample PACF cuts off after lag 1, it indicates that differencing is needed. 

(3) Compute and examine the sample ACF and PACF of the property transformed 

and differenced series to identify the orders of p and q. 

To identify the order p and q, the patterns in the sample ACF are matched with 

the theoretical pattern of known models. 

Seasonal patterns require respective seasonal differencing. If the estimated 

autocorrelation coefficients decline slowly at longer lags, first order differencing is 

usually needed. However, some time series may require little or no differencing, and that 

over differenced series produce less stable coefficient estimates. 

At this stage it is also need to decide how many autoregressive (p) and moving 

average (q) parameters are necessary to yield an effective but still parsimonious model 

of the process (parsimonious means that it has the fewest parameters and greatest number 

of degrees of freedom among all models that fit the data). In practice, the numbers of the 

p or q parameters very rarely need to be greater than 2. 
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Table (3.12) Characteristics of theoretical ACF and PACF for Stationary  

Processes 

Process ACF PACF 

AR (p) 
Tails off as exponential decay 

of damped sine wave Cuts off after lag p 

MA (q) Cut off after lag q Tail off 

ARMA (p,q) Tail off after lag (q-p) Tails off after lag(p-q) 

 Source: Univariate and Multivariate Methods (William W.S.Wei) 

(4) Test the deterministic trend term 𝜃଴when d ൐0. 

 For a non-stationary model, ∅ሺ𝐵ሻሺ1 െ 𝐵ሻௗ𝑍௧ ൌ 𝜃଴ ൅ 𝜃ሺ𝐵ሻ 𝑎௧, the parameter 𝜃଴ 

is usually omitted so that it is capable of representing series with random changes in the 

level, slope or trend. To test whether that the differenced series contains a deterministic 

trend mean, the sample mean 𝑊ഥ  of the differenced series𝑊௧ሺ1 െ 𝐵ሻௗ𝑍௧ must be 

compared with its approximate standard error 𝑆ௐഥ . 

𝜎ௐഥ
ଶ ൌ

ఊబ

௡
∑ 𝑃௝ ൌஶ

௝ୀିஶ
ଵ

௡
∑ 𝛾௝ ൌஶ

௝ୀିஶ
ଵ

௡
 𝛾ሺ1ሻ   (3.58) 

Where r (B) is the autocovariance generating function and 𝛾(1) is its value at B =1. 

 

3.12.2 Parameter Estimation  

 After a model is identified for a given time series its is important to obtain 

efficient estimates of the parameters. In this study, the method of moments, maximum 

likelihood method will be used to estimate the parameters. 

 

The Method of Moments 

The method of moments consists of substituting sample moments such as the sample 

mean, Z, Sample variance 𝛾ො0, and sample ACF 𝑝̂i for their theoretical counterparts and 

solving the resultant equations to get estimates of unknown parameters.  

 𝑍መ௧ ൌ ∅ଵ𝑍መ௧ିଵ ൅ ∅ଶ𝑍መ௧ିଶ ൅. . . ൅ ∅௣𝑍መ௧ି௣ ൅ 𝑎௧ ,  (3.59)   

where, the mean 𝜇 ൌ 𝐸 ሺ𝑍௧ሻ is estimated by 𝑍̅. To estimate ∅, firstly this use that  

𝑝௞ ൌ ∅ଵ𝑝௞ିଵ ൅ ∅ଵ𝑝௞ିଶ ൅ ⋯ ൅ ∅௣𝑝௞ି௣ 𝑓𝑜𝑟 𝑘 ൒ 1 to get the following system of Yule-

Walker equations:  

 𝑃ଵ ൌ ∅ଵ ൅ ∅ଶ𝑃 ൅ ∅ଷ𝑃ଶ ൅ ⋯ ൅  ∅௣𝑃௣ିଵ 
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 𝑃ଶ ൌ ∅ଵ𝑃ଵ ൅ ∅ଶ ൅ ∅ଷ𝑃ଵ ൅ ⋯ ൅ ∅௣𝑃௣ିଶ 

 ⋮ 

 𝑃௣ ൌ ∅ଵ𝑝௣ିଵ ൅ ∅ଶ𝑃௣ିଶ ൅ ∅ଷ𝑃௣ିଷ ൅ ⋯ ൅  ∅௣.                            (3.60)

  

Then, replacing 𝑃௞ by 𝑃෠௞, these get the moment estimators ∅෡ଵ, ∅෡ଶ, … , ∅෡௣ by solving the 

above linear system of equations. That is,  

  

⎣
⎢
⎢
⎢
⎡∅෡ଵ

∅෡ଶ
⋮

∅෡௣⎦
⎥
⎥
⎥
⎤
 = 

⎣
⎢
⎢
⎢
⎡  1           𝑃෠ଵ             𝑃෠ଶ       𝑃෠௣ିଶ       𝑃෠௣ିଵ 

𝑃෠ଵ         1           𝑃෠ଵ          𝑃෠௣ିଷ      𝑃෠௣ିଶ

⋮                                                       ⋮     
  𝑃෠௣ିଵ       𝑃෠௣ିଶ     𝑃෠௣ିଷ      𝑃෠ଵ          1       ⎦

⎥
⎥
⎥
⎤

                               (3.61) 

    

That estimators are usually called Yule-Walker estimators. 

Having obtained ∅෡ଵ, ∅෡ଶ, … , ∅෡௣, these use the result 

  𝛾଴ ൌ 𝐸 ൫𝑍መ௧ 𝑍መ௧൯ ൌ 𝐸 ሾ𝑍መ௧ ሺ∅ଵ𝑍መ௧ିଵ ൅ ∅ଶ𝑍መ௧ିଶ ൅. . . ൅ ∅௣𝑍መ௧ି௣ ൅ 𝑎௧ ሻሿ 

       =  ∅ଵ𝛾ଵ ൅ ∅ଶ𝛾ଶ ൅ ⋯ ൅ ∅௣𝛾௣ ൅ 𝜎௔
ଶ                                 (3.62) 

then, get the moment estimator for 𝜎௔
ଶ as 

  𝜎௔
ଶ ൌ  𝛾ො଴ ሺ1 െ  ∅෡ଵ, … , ∅෡௣𝑃෠ଵ െ  ∅෡ଶ𝑃෠ଶ െ ⋯ െ ∅෡௣𝑃෠௣                         (3.63) 

Regardless of AR, MA, or ARMA models, the moment estimates are very sensitive to 

rounding errors. The moment estimators are not suggested for final estimation results and 

should not be used if the process is close to being nonstationary or noninvertible. 

  

Maximum Likelihood Method 

The maximum likelihood method has been widely used in estimation.  

Conditional Maximum Likelihood Estimation 

For the general stationary ARMA (p,q) model 

𝑍መ௧ ൌ ∅ଵ𝑍መ௧ିଵ ൅ ⋯ ൅ ∅௣𝑍መ௧ି௣ ൅ 𝑎௧ െ 𝜃ଵ𝑎௧ିଵ െ ⋯ െ 𝜃௤𝑎௧ି௤,                     (3.64) 

where, 𝑍መ௧ ൌ 𝑍௧ െ 𝜇 𝑎𝑛𝑑 ሺ 𝑎௧ሻ𝑎𝑟𝑒 idependently and idependently normally distributed 

random variable with mean zero and variance 𝜎௔
ଶ, the joint probability density of a = 

(𝑎ଵ, 𝑎ଶ, … , 𝑎௡ሻ is given by  

 P (a|∅, 𝜇, 𝜃, 𝜎௔
ଶ) = (2𝜋𝜎௔

ଶ)-n/2 exp ቂ
ଵ

ଶఙೌ
మ  ∑ 𝜎௔

ଶ௡
௜ୀ଴ ቃ.                                (3.65) 

and then, 𝑎௧ can be described as 

 𝑎௧ ൌ 𝜃ଵ𝑎௧ିଵ ൅ ⋯ ൅ 𝜃௤𝑎௧ି௤ ൅ 𝑍መ௧ െ ∅ଵ𝑍መ௧ିଵ െ ⋯ െ ∅௣𝑍መ௧ି௣,                       (3.66)  
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These can write the likelihood function of the parameter (∅, 𝜇, 𝜃, 𝜎௔
ଶ). 

 Let Z = (𝑍ଵ, 𝑍ଶ, … , 𝑍௡ሻ′ and assume that the initial conditions 

       𝑍∗ ൌ ሺ𝑍ଵି௣, … , 𝑍ିଵ, 𝑍଴ሻ′ and 𝑎∗ ൌ ሺ𝑎ଵି௤, … , 𝑎ିଵ, 𝑎଴ሻ′ are known.  

The conditional log-likelihood function is 

  ln 𝐿∗ (∅, 𝜇, 𝜃, 𝜎௔
ଶ) = - 

௡

ଶ
 ln2𝜋𝜎௔

ଶ -  
ௌ∗ሺ∅,ఓ,ఏሻ

ଶఙೌ
మ                  (3.67) 

where, 𝑆∗ሺ∅, 𝜇, 𝜃ሻ ൌ  ∑ 𝑎௧
ଶ௡

௧ୀଵ  ((∅, 𝜇, 𝜃| 𝑍∗, 𝑎∗, 𝑍ሻ     

is the conditional sum of squares function. The quantities of ∅෡ , 𝜇̂, and 𝜃෠, which 

maximum equation (3.67) are called the conditional maximum likelihood estimators. 

Because of ln 𝐿∗ (∅, 𝜇, 𝜃, 𝜎௔
ଶ) contains the data only through 𝑆∗ሺ∅, 𝜇, 𝜃ሻ, these estimators 

are the same as the conditional least squares estimators got from minimizing the 

conditional sum of squares function 𝑆∗ሺ∅, 𝜇, 𝜃ሻ, which don’t contain the parameter 𝜎௔
ଶ. 

 By assuming 𝑎௣ ൌ 𝑎௣ିଵ ൌ ⋯ ൌ 𝑎௣ାଵି௤ ൌ 0 and replacing 𝑍௧ by the sample 

mean 𝑍̅ the conditional sum of squares function 𝑆∗ሺ∅, 𝜇, 𝜃ሻ can be written as becomes 

  𝑆∗ሺ∅, 𝜇, 𝜃ሻ ൌ  ∑ 𝑎௧
ଶ௡

௧ୀ௣ାଵ (∅, 𝜇, 𝜃| 𝑍ሻ  

After obtaining the parameter estimates ∅෡ , 𝜇̂, and 𝜃෠, the estimate 𝜎ො௔
ଶ is calculated from  

  𝜎ො௔
ଶ ൌ 

ௌ∗ሺ∅,ఓ,ఏሻ

ୢ.୤.
 

Where the number of degrees of freedom d.f equals the number of terms used in the sum 

of 𝑆∗൫∅෡, 𝜇̂, 𝜃෠൯ minus the number of parameters estimated.  

 

Unconditional Maximum Likelihood Estimation and Back casting Method 

A further improvement in estimation, Box, Jenkins, and Reinsel (1994) suggest the 

following unconditional log-likelihood function: 

  lnL(∅, 𝜇, 𝜃, 𝜎௔
ଶ) = - 

௡

ଶ
 ln2𝜋𝜎௔

ଶ -  
ௌሺ∅,ఓ,ఏሻ

ଶఙೌ
మ               (3.68) 

where S(∅, 𝜇, 𝜃) is the unconditional sum of squares function given by  

 S(∅, 𝜇, 𝜃) = ∑ ሾ𝐸௡
௧ୀିஶ (𝑎௧|∅, 𝜇, 𝜃, 𝑍ሻሿ2                (3.69) 

And E(𝑎௧|∅, 𝜇, 𝜃, 𝑍ሻሿ2 is the conditional expectation of 𝑎௧ given ∅, 𝜇, 𝜃, and 𝑍.  

 The quantities  ∅෡, 𝜇̂ and 𝜃෠ that maximize function (3. 68) are called unconditional 

maximum Likelihood estimators. Again, Since lnL(∅, 𝜇, 𝜃, 𝜎௔
ଶ) involves the data only 

through S(∅, 𝜇, 𝜃), these unconditional maximum likelihood estimators are equivalent to 

the unconditional least squares estimators obtained by minimizing S(∅, 𝜇, 𝜃).  
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3.12.3  Model Diagnostic Checking 

 Time series model building starts with model identification and parameter 

estimation. After parameter estimation, it has to assess model adequacy by checking 

whether the model assumptions are satisfied. The basic assumption is that the {𝑎௧} are 

white noise. That is, the 𝑎௧’s are uncorrelated random shocks with zero mean and 

constant variance. For any estimated model, the residuals 𝑎ො௧`s are estimates of these 

unobserved white noise 𝑎௧’s. Hence model diagnostic checking is accomplished through 

a careful analysis of the residual series {𝑎ො௧}. Because this residual series is the product 

of parameter estimation, the model diagnositc checking is usually contained in the 

estimation phase of a time series package. 

(1) To check whether the errors are normally distributed, one can construct a  

histogram of the standardized residuals 𝑎ො௧/𝜎ො௔ and compare it with the standard 

normal distribution using the chi-square goodness of fit test or even Tukey’s 

simple five-number summary.  

(2) To check whether the variance is constant and examine the plot of residuals.  

(3) To check whether the residuals are approximately white noise, This compute the 

sample ACF and sample PACF of the residuals to see whether they do not form 

any pattern and are all statistically insignificant.  

 Then another useful test is the portmanteau lack of fit test. This test uses all the 

residual sample ACFs as a unit to check the joint null hypothesis. 

Hypothesis 𝐻଴:  𝜌ଵ ൌ 𝜌ଶ ൌ ⋯ ൌ 𝜌௄ ൌ 0, The residual are not autocorrelated. 

       𝐻ଵ ∶   The residual are not autocorrelated. 

Test statistic   : 𝑄 ൌ 𝑛ሺ𝑛 ൅ 2ሻ ∑ ሺ𝑛 െ 𝑘ሻିଵ𝜌ො௞
ଶ௞

௞ୀଵ        (3.70)  

Critical Vale   : K= 𝒳ሺఈ,௞ ି୫ሻ
ଶ    

Decision Rule : Q > K; Reject 𝐻଴                             

This test statistic is the modified Q statistic originally proposed by Box and Pierce 

(1970). Under the null hypothesis of model adequacy, Ljung and Box (1978) and Ansley 

and Newbold (1979) show that the Q statistic approximately follows the 𝒳ሺఈ,௞ ି୫ሻ
ଶ  

distribution, where m = p+q is the number of parameters estimated in the model. 

 Based on the results of these residual analyses, if the entertained model is 

inadequate, a new model can be easily derived. 
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3.12.4 Model Selection Criteria  

In time series analysis, there are numerous model selection criteria. In this 

section, the process of suitable model is illustrated below. Firstly, making test for 

stationary is made. Statistical inference about the structure of a time series is requirement 

to make some assumptions about the structure. “The basic idea of the stationary is that, 

the probability laws that govern the behavior of the process do not change over time. This 

is to determine that the process is in a statistical equilibrium (Takyi Appiah, S., Otoo, H., 

Nabubie, I.B., 2015).” If the data are not stationary because the series display a long term 

pattern and the mean is not zero, it will have to be difference the graph in order to obtain 

stationary. The stationary is done when there is found an average pattern of the graph. 

Then, ACF and PACF are used for model identification. Maximum likelihood method is 

used to estimate the parameters in this study. As there are many feasible adequate models, 

the selection criteria is normally based on summary statistics from residuals computed 

from a fitted model or on forecast errors calculated from the out-sample forecast. Some 

model selection criteria are based on residuals. In this study, coefficient of 

determination (R2 or r2), Root Mean Square Error (RMSE), is a measure of prediction 

accuracy of a forecasting method in statistics and the Bayesian information 

criterion (BIC) are used for criteria of tentative ARIMA model. The higher value of R2, 

the lower value of RMSE, normalized BIC are used as criteria for selecting the most 

adequate model among all feasible models. 

Minimum Mean Square Error Forecasts for ARIMA Models 

 The general nonstationary ARIMA (p, d, q) model with d ≠ 0, i.e., 

   Ø (B)(1- B)d𝑍௧= θ(B) 𝑎௧, 

Where Ø (B) = (1- Ø B - … - Øp (BØ) is a stationary AR operator and θ(B) = (1- θ1 B - … 

- θ q (Bq) is an invertible MA operator, respectively. Although for this process the mean 

and the second order moment such as the variance and the autocovariance functions vary 

over time, the complete evolution of the process is completely determined by a finite 

number of fixed parameters. Hence, the forecast of the process can be viewed as the 

estimation of a function of these parameters and obtain the minimum mean square error 

forecast using a Bayesian argument. It is well known that using this approach with respect 

to the mean square error criterion, which corresponds to a squared loss function, when 

the series is known up to time n, the optimal forecast of 𝑍௡ା௟  is given by its conditional 
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expectation E(𝑍௡ା௟ 𝑍௡, 𝑍௡ି௟,…). The minimum mean square error forecast for the 

stationary ARMA model discussed earlier is, of course, a special case of the forecast for 

the ARIMA (p, d, q) model with d = 0. 

 To derive the variance of the forecast for the general ARIMA model, we rewrite 

the model at time t + l in an AR representation that exist because the model is invertible, 

Thus,  

𝜋(B) 𝑍௧ା௟   = 𝑎௧ା௟, (3.71) 

Where 

                𝜋(B) = 1 െ  ∑ 𝜋௡
௜ୀ଴ j 𝐵𝑗 = 

Ø ሺ஻ሻሺଵି஻ሻ೏

ఏሺ஻ሻ
              (3.72) 

or, equivalently 

                       𝑍௧ା௟=  ∑ 𝜋௡
௜ୀ଴ j 𝑍௧ା௟~ j + 𝑎௧ା௟                                                         (3.73) 

Following Wegman (1986), we apply the operator 

                     1+ 𝜓 𝐵 + … + 𝜓௟ିଵ 𝐵௧ିଵ                                           (3.74) 

To (3.74) and obtain 

 ∑ ∑ 𝜋௟ିଵ
௞ୀ଴

∝
௝ୀ଴  j 𝑍௧ା௟ି௝ି௞   + ∑ 𝜓௞

௟ିଵ
௞ୀ଴  𝑎௧ା௟ିଵ = 0,                  (3.75) 

Where  𝜋଴ = -1 and 𝜓଴ = 1. It can be easily shown that  

∑ ∑ 𝜋௟ିଵ
௞ୀ଴

∝
௝ୀ଴ j𝑍௧ା௟ି௝ି௞ = 𝜋଴𝑍௧ା௟+∑ ∑ 𝜋௠

௜ୀ଴
௟ିଵ
௠ୀଵ m-i Ψ௜𝑍௧ା௟– m  

+∑ ∑ 𝜋௟ିଵା௝ି௜ Ψ𝑍௧ି௝ା௟
௟ିଵ
௜ୀ଴

∝
௝ୀଵ       (3.76) 

Choosing ψ weights so that 

 ∑ 𝜋௠ି௜
௠
௜ୀ଴ ψi = 0, for = 1,2, …, l-1      (3.77) 

We have  

 Zt+l =  ∑ 𝜋௝
ሺ௟ሻఈ

௝ୀଵ  𝑍௧ି௝ା௟  + ∑ 𝜓௜
௟ିଵ
௜ୀ଴  𝑎௧ା௟ି௜,     (3.78) 

Where 

 𝜋௝
ሺ௟ሻ= ∑ 𝜋௟ିଵା௝ିଵ

௟ିଵ
௜ୀ଴  Ψ௜.       (3.79) 
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Thus, given Zt, for t ≤ n, we have  

 𝑍መ௡(l) = E (Zn+l ׀ Zt, t ≤ n) 

          = ∑ 𝜋௝
ሺ௟ሻఈ

௝ୀଵ 𝑍௡ି௝ାଵ,       (3.80) 

Because E (𝑎௡ା௝׀ Zt, t ≤ n) = 0, for j > 0. The forecast error is  

 en (l) = Zn+l - 𝑍መ௡(l) 

          = ∑ 𝜓௝
௟ିଵ
௜ୀ଴  𝑎௡ା௟ି௝,       (3.81) 

Where the 𝜓௝ weights, by (3.77), can be calculated recursively from the 𝜋j weights as 

follow:  

 𝜓௝ = ∑ 𝜋௝ି௜
௝ିଵ
௜ୀ଴ 𝜓௜,  j = 1, …, l – 1.         (3.82) 

Because E(en(l) ׀ Zt, t ≤ n) = 0, the forecast is unbiased with the error variance  

  Var (en(l)) = 𝜎௔
ଶ ∑ 𝜓௝

ଶ௟ିଵ
௝ୀ଴ .      (3.83) 

For a normal process, the (1- 𝛼) 100% forecast limits are  

 𝑍መ௡(l) ± 𝑁∝
ଶൗ  [1 + ∑ 𝜓௝

ଶ௟ିଵ
௝ୀ଴ ]1/2 𝜎௔      (3.84) 

Where 𝑁∝
ଶൗ   is the standard normal deviate such that P (N > 𝑁∝

ଶൗ ) =  
∝

ଶ
 . 

3.12.5 Model Building and Forecasting for Seasonal Model 

 Seasonal models are special forms of ARIMA models which described the model 

identification, parameter estimation, diagnostic checking, and forecasting for these 

models follow the same general methods of ARIMA models which have already 

discussed in detail for this chapter.  
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CHAPTERE IV 

TIME SERIES ANALYSIS FOR FORECASTING OF  

RAINFALL DATA 

 

4.1 Data Information 

  The dataset includes the historical normal rainfall Stations for each month from 

January 2006 to December 2018. The number of rainfall data in Chauk and Shwebo 

townships are obtained from Department of Meteorology and Hydrology in Mandalay. 

The present study is carried out for Central Dry Zone in Myanmar for a period of 13 

years. This data is used for the Yearly, Monthly and Seasonal Rainfall Probability 

Analysis. These data series will analyzed by using the Box-Jenkins Method (1970) and 

this method consists of four steps: model identification, parameter estimation, diagnostic 

checking and forecasting.  

 The autoregressive, moving average and autoregressive moving average models 

are used in stationary time series analysis. A time series is supposed to be stationary, if 

the mean of the series and the covariance among its observation do not change over time 

and do not follow any trend. In practice, most time series are non-stationary, so to fit 

stationary models, it is necessary to get rid of the non-stationary source of variation. To 

solve out this, introduced by ARIMA model which generally overcomes this limitation 

by the non-stationary data into a stationary. Box and Jenkins have generalized this model 

to deal with seasonality. Their proposed model is identified as the Seasonal ARIMA 

(SARIMA) model.  

 Firstly, the monthly rainfall data are described and analyzed. The SACF and 

SPACF functions are used to identify the order p and q of the model in the identification 

stage.  
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4.2 Descriptive Statistics of Volumes of Rainfall Data in Chauk Townships (2016-2018) 

  The monthly rainfall data of Minimum, Maximum and Average was shown in Table (4.2). 

Table (4.2) Volumes of Rainfall data in Chauk (2006-2018) 

       Year  
 
Month    

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Max Min Average

Jan 0 0 10 0 0 0 0 0 0 25 0 0 41 41 0 6

Feb 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mar 0 0 0 0 5 8 8 0 0 0 0 8 0 8 0 2

Apr 8 0 0 3 0 12 0 5 0 13 0 85 2 85 0 10

May 55 249 96 79 55 83 5 46 32 11 79 113 137 249 5 80

Jun 128 81 50 42 102 54 25 84 52 63 135 53 192 192 25 82

Jul 99 12 26 16 3 12 28 15 34 111 71 47 35 111 3 39

Aug 134 48 38 35 92 213 70 33 34 122 260 77 71 260 33 94

Sep 176 125 110 63 125 73 154 226 78 85 189 132 63 226 63 123

Oct 172 89 115 95 387 290 68 218 70 168 248 132 70 387 68 163

Nov 8 27 0 0 0 0 7 0 37 10 50 17 0 50 0 12

Dec 0 0 0 0 14 5 0 0 0 1 0 9 13 14 0 3

Max 176 249 115 95 387 290 154 226 78 168 260 132 192 387 78 194

Min 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Average 65 53 37 28 65 63 30 52 28 51 86 56 52 387 0 51

Sources : Monthly Rainfall data: Department of Meteorology and Hydrology in Mandalay
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4.3 Descriptive Statistics of Volumes of Rainfall Data in Shwebo Townships (2016-2018) 

The monthly rainfall data of Minimum, Maximum and Average was shown in Table (4.2). 

Table (4.3) Volumes of Rainfall data in Shwebo Township (2006-2018) 

       Year  
 
Month    

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Min Max Average

Jan 0 0 32 0 0 0 0 0 0 1 0 0 23 0 32 4 

Feb 0 9 0 0 0 0 0 0 15 0 3 0 0 0 15 2 

Mar 0 0 0 0 4 51 4 0 0 14 0 11 0 0 51 6 

Apr 89 0 2 28 12 138 8 12 11 17 23 8 17 0 138 28 

May 76 188 113 181 55 159 16 60 44 94 87 201 120 16 201 107 

Jun 218 133 91 192 165 87 48 60 61 14 161 83 229 14 229 119 

Jul 158 21 53 16 27 69 78 47 20 368 106 143 45 16 368 89 

Aug 195 176 105 137 157 279 88 302 238 116 427 243 48 48 427 193 

Sep 182 82 62 139 152 88 279 221 259 211 124 196 79 62 279 160 

Oct 104 146 137 60 362 284 115 191 68 203 74 140 219 60 362 162 

Nov 98 47 6 0 0 0 20 0 3 7 17 48 0 0 98 19 

Dec 3 0 0 0 34 5 0 2 0 0 0 11 0 0 34 4 

Min 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 2 

Max 218 188 137 192 362 284 279 302 259 368 427 243 229 62 427 193 

Average 94 67 50 63 81 97 55 75 60 87 85 90 65 18 186 74 

Sources : Monthly Rainfall data: Department of Meteorology and Hydrology in Mandalay
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Chauk’s the average rainfall is peak on May to October from 2006 to 2018. The 

lowest contribution to monthly rainfall is less in January, February, March, April, 

November and December and Figure (4.2) show that 2010 has the maximum rainfall 

contribution is at 387mm. This is followed by years 2011 (290mm), 2013 (218mm) and 

2016 (248mm), all of which have significant rainfall. 

 

Shwebo’s the average rainfall is peak on May to October from 2006 to 2018. 

The lowest contribution to monthly rainfall is less in January, February, March, April, 

November and December and Figure (4.3) show that 2016 has the maximum rainfall 

contribution is at 427mm. This is followed by years 2015 (368mm), 2010 (362mm) and 

2018 (229mm), all of which have significant rainfall. 
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4.4 Plot of original monthly rainfall data in Chauk Township 

 The original time series was plotted with the monthly rainfall data recorded 

from 2006 to 2018 employing the Box-Jenkin ARIMA model-building procedure.  

 

Figure (4.4) Plot of original monthly rainfall data in Chauk Township  

(2006-2018) 

The plot of data is given in Figure (4.4), it indicates that the series is stationary 

in the mean but may not be stationary in variance. It suggests that square root 

transformation for variance stabilization. This series indicate a quite obvious that there 

exists seasonality in the data has a seasonal pattern with peaks and valleys in the same 

months of the year. So, this series need to check whether the rainfall series is seasonality 

or not.  

 

4.5  Test of Seasonality 

 The results for testing the seasonality in Chauk Township (2006-2018) are 

shown in Table (4.5).  

Table (4.5) ANOVA Table for rainfall series in Chauk Township  

Source of 
variation 

Sum of Square 
Degree of 
Freedom 

Mean Square 
Error 

F-ratio 

Due to Month SSM= 443233.86 11 MSM= 40293.99 19.77 

Due to Year SSY= 41637.44 12 MSY= 3469.79 

Error (Residual) SSE= 268992.72 132 MSE=2037.82 

Total SST= 753864.02 155     
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At 5% level of significance, the critical value K = F (0.05, 11, 132) is 1.75. 

Meanwhile the computed F-value = 19.77 is greater than K=1.75, it can be identified 

that the monthly rainfall series exists seasonality.  

 

4.6 Seasonal Variation 

 The seasonal variation of monthly rainfall data series in Chauk from 2006 to 

2018 are computed by the ratio to moving averages method. 

 

Table (4.6) Seasonal Indexes for rainfall data in Chauk (2006-2018) 

Month Seasonal Index 

January 0.1642

February 0.0376

March 0.0737

April 0.2074

May 1.5726

June 1.7615

July 0.8056

August 1.7025

September 2.4005

October 2.9522

November 0.2326

December 0.0903
 

The seasonal variation of monthly rainfall data series from 2006 to 2018 is 

calculated by the ratio to moving average method under multiplicative decomposition 

of time series which consists of 156 observations and it was shown in Appendix. The 

result of Table (4.6), the seasonal index are shown that the lowest value of seasonal 

index is in February, March and December and the month of May, June, August, 

September and October have the highest value of seasonal index. The peak period is in 

September and the lowest period is February with the seasonal index of rainfall data 

series in Chauk Township.  
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4.7 Box-Jenkins ARIMA Model for Rainfall data series in Chauk Township  

  The monthly rainfall series in Chauk Township from 2006 to 2018, applied Box-Jenkins Methodology which is Model 

Identification, Parameter Estimation, Diagnostic Checking and Forecasting. The data series consist of 156 observations.  

 

4.7 Identification 

The SACF and SPACF function of rainfall values are calculated and shown in Table (4.7.1) and Figure (4.7.1). These results pointed out 

that the seasonality trend exists and it should be eliminated to achieve stationary of the time series data.  

Table (4.7.1) Sample ACF and Sample PACF for the original series Zt of Rainfall in Chauk Township  

   for {Zt}             

Lag  K 1 2 3 4 5 6 7 8 9 10 11 12

  1-12 0.347 0.113 -0.088 -0.088 -0.252 -0.404 -0.213 -0.056 -0.064 0.104 0.254 0.558
Zt St-E 0.079 0.079 0.079 0.079 0.078 0.078 0.078 0.077 0.077 0.077 0.077 0.076

  13-24 0.26 0.025 -0.115 -0.124 -0.229 -0.367 -0.229 -0.093 -0.033 0.07 0.246 0.428
  St-E 0.076 0.076 0.076 0.075 0.075 0.075 0.075 0.074 0.074 0.074 0.073 0.073

        

    for {Zt}                         

Lag  K 1 2 3 4 5 6 7 8 9 10 11 12 

  1-12 0.347 -0.009 -0.142 -0.014 -0.23 -0.313 0.025 -0.003 -0.18 0.137 0.129 0.383 

Zt St-E 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 

  13-24 -0.016 -0.118 -0.058 0.016 -0.022 -0.104 -0.05 -0.094 -0.02 -0.018 0.058 0.066 

  St-E 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 
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In Figure (4.7.1) the values of SACF are statistically significant at lag 1,6,12 

and 24 and shows a damping sine wave. The SPACF has relatively large spikes at 1, 6 

and 12.  

 

 
 

 
 
Figure (4.7.1) Sample Correlogram for Original Series of Rainfall value in 

Chauk Township
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With reference to Figure (4.4), the plot is clearly shown the series may not be 

stationary in variance. So, this series required transformation for variance stabilization. 

It suggests that a square root transformation applied to the data. For power 

transformation, Residual mean square errors calculated with the two transformations 

which are shown in Table (4.7.2). 

 

Table (4.7.2) Residual mean square errors in the power transformation 

 

Transformation  Residual mean square 
errors (RMSE) 

Square root  79.59 

Logarithmic 83.54 

 

According to the result, Square root transformation of RMSE is lower than 

Logarithmic transformation value. So, it suggests that a square root transformation is 

suitable to apply it to the original series to obtain the variance stationary. The sample 

ACF and sample PACF of square root transformation series ඥ𝑍௧ were computed as 

shown in Table (4.7.3) and Figure (4.7.3).  
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Table (4.7.3) Sample ACF and Sample PACF Function for square root transformation of Rainfall values in Chauk Townships 

   (a)       𝜌ො௞ for {ඥ𝑍௧}            

Lag  K 1 2 3 4 5 6 7 8 9 10 11 12 

 1-12 0.347 0.113 -0.088 -0.088 -0.252 -0.404 -0.213 -0.056 -0.064 0.104 0.254 0.558 

ඥ𝑍௧ St-E 0.079 0.079 0.079 0.079 0.078 0.078 0.078 0.077 0.077 0.077 0.077 0.076 

 13-24 0.260 0.025 -0.115 -0.124 -0.229 -0.367 -0.229 -0.093 -0.033 0.070 0.246 0.428 

  St-E 0.076 0.076 0.076 0.075 0.075 0.075 0.075 0.074 0.074 0.074 0.073 0.073 

(b)  ∅෡௞௞ for {ඥ𝑍௧}   
        

Lag  K 1 2 3 4 5 6 7 8 9 10 11 12 

 1-12 0.347 -0.009 -0.142 -0.014 -0.230 -0.313 0.025 -0.003 -0.180 0.137 0.129 0.383 

ඥ𝑍௧ St-E 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 

 13-24 -0.016 -0.118 -0.058 0.016 -0.022 -0.104 -0.050 -0.094 -0.020 -0.018 0.058 0.066 

  
St-E 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 0.080 
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Figure (4.7.3) Sample Correlogram for square root transformation of Rainfall 

values in Chauk Township 

In Figure (4.7.3) the sample ACF illustrate a single spike at lag 12. The sample 

PACF has relatively large spike at lags 1,5,6 and12.  This series have strong seasonal 

variation that the first seasonal differencing is called for. To eliminate seasonality, the 

sample ACF and sample PACF of first seasonal differenced series    (1 – B12) ඥ𝑍௧ were 

computed as shown in Table (4.7.4) and Figure (4.7.4). 
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Table (4.7.4) Sample ACF and Sample PACF Function for First Seasonal Difference transformation Series (Wt) of Rainfall values in 

Chauk Townships 

 

(a) 𝜌ො௞ for {Wt = (1 – B12) ඥ𝑍௧}      

Lag K 1 2 3 4 5 6 7 8 9 10 11 12 

 1-12 0.151 0.121 0.018 0.033 -0.002 0.035 0.045 0.016 -0.054 0.029 -0.083 -0.316 

Wt St-E 0.082 0.082 0.082 0.082 0.081 0.081 0.081 0.08 0.08 0.08 0.08 0.079 

 13-24 0.009 -0.019 -0.02 -0.022 -0.052 -0.02 -0.031 -0.049 0.081 -0.059 -0.059 -0.184 

 St-E 0.079 0.079 0.078 0.078 0.078 0.077 0.077 0.077 0.076 0.076 0.076 0.076 

              

(b) ∅෡௞௞ for {Wt = (1 – B12) ඥ𝑍௧}      

Lag K 1 2 3 4 5 6 7 8 9 10 11 12 

 1-12 0.151 0.101 -0.014 0.021 -0.010 0.032 0.038 -0.003 -0.067 0.044 -0.084 -0.317 

Wt St-E 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 

 13-24 0.126 0.035 -0.046 0.006 -0.055 0.018 0.020 -0.072 0.082 -0.029 -0.139 -0.280 

 St-E 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 
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Figure (4.7.4)  Sample Correlogram for First Seasonal Difference transformation 

Series of Rainfall values in Chauk Township 

 

According to the Figure (4.7.4), both of the values of SACF and SPACF are 

same spike after lags 12 lie inside of the confidence limits respectively. It can be 

suggested that the series (1 – B12) ඥ𝑍௧  might be considered SAR (1) model as tentative 
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model for this series. Thus the tentative model for the series is SAR (1) process and 

checked parameter estimation as shown in Table (4.8.1). 

(1 – 𝛷B12) ඥ𝑍௧ ൌ 𝜃଴ ൅ 𝑎௧ 

 

4.8 Parameter Estimation 

Using SAR (1) model, the estimated parameters with their statistics were shown 

in Table (4.8.1) and Figure (4.8.1).  

 

Table (4.8.1) Estimated Parameters and Model Statistics for SAR (1) Model of 

Rainfall values in Chauk Township 

  Estimate SE t P-value 

Constant 52.540 9.944 5.284 .000 

𝛷  .591 .065 9.085 .000 

 

The following estimated model was obtained 

ሺ1 ൅ 0.591𝐵ଵଶሻ 𝑍௧ ൌ 52.540 ൅ 𝑎௧ 

     (0.065)      (9.944)                        

The estimation of SAR (1) Model of rainfall values in Chauk Township give 𝜃଴ 

= 52.540 with the estimated standard error 9.944. The estimated parameter 𝛷 = 0.591, 

the estimated standard error 0.065, the test statistics t is 9.085 with P-value is 0.000. 

So, there is no evidence to reject the null hypothesis 𝛷 ൌ 0. 

Furthermore, the sample ACFs and the sample PCFs of residual for the above 

tentative model were shown in Table (4.8.2) and Figure (4.8.2). 
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Table (4.8.2) Estimated Autocorrelation and Partial Autocorrelation Function of Residual for SAR (1) Model of Rainfall values in Chauk 

Township 

 

Lag K 1 2 3 4 5 6 7 8 9 10 11 12 

01-12 .236 .120 -.011 -.010 -.109 -.127 -.010 .028 -.041 .039 .002 -.099

St-E .080 .084 .086 .086 .086 .086 .088 .088 .088 .088 .088 .088

13-24 .043 -.031 -.057 -.059 -.078 -.095 -.090 -.065 .047 -.019 .014 -.001

St-E .089 .089 .089 .089 .089 .090 .090 .091 .091 .091 .091 .091

             

             

Lag K 1 2 3 4 5 6 7 8 9 10 11 12 

01-12 .236 .068 -.057 -.004 -.105 -.086 .061 .034 -.072 .054 -.028 -.127

St-E .080 .080 .080 .080 .080 .080 .080 .080 .080 .080 .080 .080

13-24 .124 -.053 -.084 .005 -.088 -.093 -.001 -.056 .038 -.018 -.039 -.034

St-E .080 .080 .080 .080 .080 .080 .080 .080 .080 .080 .080 .080
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Figure (4.8.2) Sample ACF and Sample PACF of Residual values for SAR (1) 

Model of Rainfall Series in Chauk Township  

 

In Figure (4.8.2), the sample ACF and Sample PACF of residual is cut off and 

significant spike at lag 1 and this model exhibit a pattern that the residual series are not 

white noise process. That the model to an ARIMA (1,0,0) x (1,1,0)12 model considered 

as another tentative model that is  

(1- ∅𝐵ሻሺ1 െ Φ𝐵ଵଶሻඥ𝑍௧  ൌ  𝜃଴ 
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 Seasonal ARIMA (1,0,0) x (1,1,0)12 model, the estimated parameter with their 

statistics were shown in Table (4.8.3).  

 

Table (4.8.3) Estimated Parameters and Model Statistics for Seasonal ARIMA 

(1,0,0) x (1,1,0)12 Model of Rainfall values in Chauk Township 

  

  Estimate SE t P-value 

Constant .012 .214 .055 .956 

∅ .143 .083 1.707 .090 

Φ  -.437 .080 -5.481 .000 
 

The following estimated model was obtained 

ሺ1 – 0.143𝐵ሻሺ1 ൅ 0.437𝐵ଵଶሻඥ𝑍௧  ൌ  0.012 

       (0. 083)        (0.080)                                              

The estimation (1,0,0) x (1,1,0)12 Model of rainfall values in Chauk Township 

give 𝜃଴ = 0.012, the estimated standard error is 0.214 with the test statistics is 0.055. 

The estimate parameter ∅ ൌ 0.143, the estimated standard error is 0.083, the test 

statistics is 1.707 with p-value is 0.090 and Φ = -0.437, the estimated standard error 

0.080 with p-value is 0.000. So, there is no evidence to reject the null hypothesis.  

Moreover, the sample ACFs and the sample PCFs of residual for the tentative 

model were shown in Table (4.8.4) and Figure (4.8.4). 
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Table (4.8.4) Estimated Autocorrelation and Partial Autocorrelation Function of Residual for (1,0,0) x (1,1,0)12 Model of Rainfall 

values in Chauk Township 

 

Lag K 1 2 3 4 5 6 7 8 9 10 11 12 

01-12 -.016 .112 -.074 .039 .007 .069 .035 .103 -.020 .064 -.017 -.087 

St-E .083 .083 .084 .085 .085 .085 .085 .085 .086 .086 .087 .087 

13-24 .056 .084 .018 .006 -.076 -.045 .006 -.044 .096 -.005 -.062 -.237 

St-E .087 .088 .088 .088 .088 .089 .089 .089 .089 .090 .090 .090 

             

             

Lag K 1 2 3 4 5 6 7 8 9 10 11 12 

01-12 -.016 .112 -.072 .026 .024 .058 .038 .093 -.018 .046 -.003 -.114 

St-E .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 

13-24 .061 .093 -.016 -.012 -.066 -.055 .026 -.044 .073 .015 -.093 -.254 

St-E .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 
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Figure (4.8.4) Sample ACF and Sample PACF of Residual values for  

(1,0,0) x (1,1,0)12 Model of Rainfall values in Chauk Township  

 

In Figure (4.8.4), the sample ACF and Sample PACF of residual have a 

significant spike at lag 24. It indicates that the residual series are not white noise process 

and the series exhibit the patterns. So, it can be concluded that the tentative SAR (1) 

model is inadequate. Then the another SAR (2) model was considered to a seasonal 

ARIMA (0,0,0) x (2,1,0)12 model, that is  

ሺ1 െ Φଵ𝐵ଵଶ െ Φଶ𝐵ଶସሻඥ𝑍௧  ൌ 𝜃଴ 
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Using Seasonal ARIMA (0,0,0) x (2,1,0)12 model, the estimated parameter of 

their statistics were shown in Table (4.8.5).  

  

Table (4.8.5) Estimated Parameters and Model Statistics for Seasonal ARIMA 

(0,0,0) x (2,1,0)12 Model of Rainfall values in Chauk Township  

 Estimate SE T P-value 

Constant .052 .141 .367 .714 

Φଵ -.549 .088 -6.224 .000 

Φଶ -.308 .093 -3.326 .001 

 

The estimated model was obtained:  

ሺ1 ൅ 0.549𝐵ଵଶ ൅ 0.308𝐵ଶସሻඥ𝑍௧  ൌ 0.052 

         (0.088)         (0.093)                   (0.141) 

 

According to Table (4.8.5), it can be found that this table gives 𝜃଴ ൌ 0.052 and 

the estimated standard error is 0.141. The estimated parameter of Φଵ= -0.549, the 

estimated standard error is 0.088, the test statistics t is -6.224 with their p-value are 

0.000. Hence there are no evidence to reject the null hypothesis Φଵ =0. And the 

estimated parameter is   Φଶ  = -0.308, the estimated standard error is 0.093, and the test 

statistics t is -3.326 with P-value is 0.001 at 1% level of significant. Hence there are no 

evidence to reject the null hypothesis Φଶ = 0.  
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4.9 Diagnostic Checking 

 Checking the model adequacy for the residual ACF and PACF of the modified model as shown in Table (4.9.1) and Figure (4.9.1).  

       𝛾௞ሺ𝑎ො௧ሻ േ 2.𝑆. 𝐸෢  ሾ𝛾௞ ሺ𝑎ො௧ሻሿ 

Where,   

       𝑆. 𝐸෢  ሾ𝛾௞ ሺ𝑎ො௧ሻሿ = 
ଵ

√௡
 

 

Table (4.9.1) Estimated Autocorrelation and Partial Autocorrelation Function of Residual for (0,0,0) x (2,1,0)12 Model of Rainfall 

values in Chauk Township 

Lag K 1 2 3 4 5 6 7 8 9 10 11 12 

01-12 .102 .146 -.035 .035 .038 .081 .034 .131 .020 .101 -.014 -.041 

St-E .083 .084 .086 .086 .086 .086 .087 .087 .088 .088 .089 .089 

13-24 .074 .080 -.012 .023 -.053 -.030 .012 -.051 .082 -.005 -.046 -.104 

St-E .089 .090 .090 .090 .090 .090 .090 .090 .091 .091 .091 .091 

             

             

Lag K 1 2 3 4 5 6 7 8 9 10 11 12 

01-12 .102 .137 -.063 .024 .048 .064 .012 .114 -.003 .068 -.025 -.073 

St-E .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 

13-24 .093 .063 -.070 .000 -.038 -.053 .031 -.057 .076 -.002 -.086 -.098 

St-E .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 
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Figure (4.9.1) Sample ACF and Sample PACF Function of Residual Values for 

ARIMA (0,0,0)x (2,1,0)12 Model of Rainfall value in Chauk Township  

  

 In checking model adequacy, Table (4.9.1) and Figure (4.9.1) give the value of 

residual ACF and PACF of considered model lie inside the confidence limits and the 

residuals are white noise process. So, this suggested that this model adequate. 

Additionally, the autocorrelation of 𝑎௧ෝ  can be taken as not significant different from zero. 
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Furthermore, the autocorrelation of residuals are analyzed by using the test statistics Q.  

 H0 : 𝜌ଵ ൌ 𝜌ଶ ൌ ⋯ ൌ 𝜌௞ ൌ 0 ( There is no correlation between the residuals)  

 

Table (4.9.2) Model Statistics of SARIMA (0,0,0) x (2,1,0)12 model for Rainfall value 

in Chauk Township 

The value of residual for SARIMA (0,0,0) x (2,1,0)12 are shown in Table (4.9.2).  

Model Statistics 

Model Fit statistics Ljung-Box Q(18) 
Number of 

Outliers 

Stationary R-
squared 

R-
squared 

RMSE
Normalized 

BIC 
Statistics DF Sig.  

0.213 0.355 56.369 8.167 13.674 16 0.623 0 

 

According to Table (4.9.2), an overall check is performed by using the test 

statistics Q, the observed value of Q is 13.674 and it is not significant since p-value is  

0.623 which is greater than 𝛼 ൌ 0.5, there is no autocorrelation between the residuals. 

Thus, it can be considered that the SARIMA (0,0,0) x (2,1,0)12 model the fitted is adequate 

for this data and used to forecast rainfall data in Chauk Township. 

 

4.10 Forecasting 

 Since the model SARIMA (0,0,0) x (2,1,0)12 adequate, this model can be used 

to forecast the future rainfall in Chauk Township. Below Table (4.10.1) and Figure 

(4.10.1) shows the forecast values of rainfall data in Chauk township, Myanmar. 

According to these forecasts Rainfall data series which will decrease in the future; this 

result indicates that the model provides an acceptable and fitted to predict the rainfall 

data series. 
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Table (4.10.1)    Forecast Values with 95% Limits for Rainfall data in Chauk  

  Township 

Year 
Forecast 

Value 

95% Limits 
Actual 
Value 

UCL LCL 

Jan-19 18 79 8 2 

Feb-19 9 36 34 0 

Mar-19 9 45 26 0 

Apr-19 18 78 9 0 

May-19 123 274 23 24 

Jun-19 145 309 33 81 

Jul-19 58 167 1 26 

Aug-19 129 285 26 149 

Sep-19 123 275 23 12 

Oct-19 141 302 31 24 

Nov-19 20 84 7 30 

Dec-19 15 70 12 0 

 
According to Table (4.10.1) and Figure (4.10.1), the result indicates that the 

forecast values of SARIMA (0,0,0) x (2,1,0)12 model is not very close to the observed 

value but the forecast values are between the upper confidence limit (UCL) and the 

lower limit (LCL). According to the forecast values, monthly rainfall in Chauk 

Township is expected to decrease in the future year. 
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Figure (4.10.1) Forecast Values with 95% Limits for Rainfall value in Chauk Township for SARIMA (0,0,0) x (2,1,0)12 Model 
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4.11 Plot of original monthly rainfall data in Shwebo Township 

The number of rainfall data in Shwebo Township are shown in Table (4.11) and 

figure (4.11).  

 

Figure (4.11) Plot of original monthly rainfall data in Shwebo Township  

          (2006-2018) 

 

In Figure (4.11) presents information about the monthly rainfall data in Shwebo 

from 2006 to 2018. It can be seen that the pattern of rainfall data has similar pattern 

throughout the years 2006 to 2018 where the series seen to be mean stationary but may 

be nonstationary in variance that this series required transformation for variance 

stabilization. In this figure, the series is also repetitive in nature due to seasonal 

variation and there exists seasonality in the data has a seasonal pattern with peaks and 

valleys in the same months of the year.  

 

4.12  Test of Seasonality 

 The results for testing the seasonality in Shwebo Township (2006-2018) are 

shown in Table (4.12).  
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Table (4.12) ANOVA Table for rainfall series in Shwebo Township  

Source of 
variation 

Sum of Square 
Degree of 
Freedom 

Mean Square 
Error 

F-ratio 

Due to Month SSM= 443233.86 11 MSM= 40293.99 19.77 

Due to Year SSY= 41637.44 12 MSY= 3469.79 

Error 
(Residual) 

SSE= 268992.72 132 MSE=2037.82 

Total SST= 753864.02 155     

 

At 5% level of significance, the critical value K = F (0.05, 11, 132) is 1.75. 

Meanwhile the computed F-value = 19.77 is greater than K=1.75, it can be concluded 

that the monthly rainfall data exists seasonality.  

 

4.13 Seasonal Variation 

 The seasonal variation of monthly rainfall data series in Shwebo from 2006 to 

2018 are computed by the ratio to moving averages method. 

 

Table (4.13) Seasonal Indexes for rainfall data in Shwebo Township  

(2006-2018) 

Month Seasonal Index 

January 0.1332
February 0.0451
March 0.0539
April 0.1659
May 1.5916
June 1.9246
July 1.1628

August 2.2755
September 2.1526

October 2.1329
November 0.3153
December 0.0486
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The seasonal variation of monthly rainfall data series from 2006 to 2018 is 

calculated by the ratio to moving average method under multiplicative decomposition 

of time series which consists of 156 observations and it was shown in Appendix. The 

result of Table (4.13), the seasonal index are shown that the lowest value of seasonal 

index is in February, March, November, December and the month of May, June, 

August, September and October have the highest value of seasonal index. The peak 

period is in August and the lowest period is February with the seasonal index of rainfall 

data series in Shwebo Township. 

 

4.14 Box-Jenkins ARIMA Model for Rainfall data series in Shwebo Township  

 The monthly rainfall series in Chauk Township from 2006 to 2018 analyzed as 

per Box-Jenkins Method which is Model Identification, Parameter Estimation, 

Diagnostic Checking and Forecasting. The data series consists of 156 observations. 

 

4.14 Identification 

The SACF and SPACF function of rainfall values are calculated and shown in 

Table (4.14.1) and Figure (4.14.1). These results pointed out that the seasonality exist 

and it should be eliminated to achieve stationary of the time series data.  
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Table (4.14.1) Sample Autocorrelation Function and Sample Partial Autocorrelation Function for the original series Zt of Rainfall in 

Shwebo Township  

  

(a)      for {Zt}                

Lag K 1 2 3 4 5 6 7 8 9 10 11 12 

 01-12 0.342 0.198 -0.058 -0.202 -0.364 -0.454 -0.366 -0.234 -0.063 0.194 0.426 0.53

Zt St-E 0.079 0.079 0.079 0.079 0.078 0.078 0.078 0.077 0.077 0.077 0.077 0.076

 13-24 0.438 0.111 -0.131 -0.186 -0.3 -0.441 -0.352 -0.23 -0.058 0.21 0.413 0.512

   St-E 0.076 0.076 0.076 0.075 0.075 0.075 0.075 0.074 0.074 0.074 0.073 0.073

              

               

    (b)  for {Zt}                

Lag K 1 2 3 4 5 6 7 8 9 10 11 12 

 01-12 0.342 0.092 -0.172 -0.179 -0.257 -0.3 -0.187 -0.151 -0.129 0.049 0.205 0.263 

Zt St-E 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 

 13-24 0.207 -0.119 -0.239 0.01 0.074 -0.095 -0.014 -0.063 -0.137 0.032 0.078 0.109 

   St-E 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 
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 According to Table (4.14.1), the values of SACF are high at lags 1,6,12, 18 and 

24 then slowly declines and the value of SPACF is cutoff at lag 1.  

 

Figure (4.14.1) Sample Correlogram for Original Series of Rainfall data in  
  Shwebo Township 

 

With reference to Figure (4.14.1), the sample autocorrelation function ACF 

indicates a strong variation with seasonal period 12 and the sample ACFS of the original 

series slowly decay and there are significant seasonal spike of sample PACFS at lag 1. 



66 
 

 

The series seen to be mean stationary, but the variance may not be is stationary and is 

not stabilization. So, this series need to transformation for variance stabilization. For 

power transformation, Residual mean square errors calculated with the two 

transformations which are shown in Table (4.14.2). 

 
Table (4.14.2) Residual mean square errors in the power transformation of 

Shwebo Township 

 

Transformation  
Residual Mean 

Square Error (RMSE)

Square root  108.75 

Logarithmic 113.81 

 
According to the result, Square root transformation of RMSE is lower than 

Logarithmic transformation value. So, it suggests that a square root transformation is 

suitable to apply it to the original series to obtain the variance stationary. The sample 

ACF and sample PACF of square root transformation series ඥ𝑍௧ were computed as 

shown in Table (4.14.3) and Figure (4.14.3). 
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Table (4.14.3) Sample ACF and Sample PACF Function for square root transformation of Rainfall values in Shwebo Townships 

 

     (a)       for             

Lag K 1 2 3 4 5 6 7 8 9 10 11 12 

 01-12 0.511 0.269 -0.046 -0.25 -0.501 -0.608 -0.494 -0.295 -0.045 0.238 0.525 0.679 

 

St-E 0.079 0.079 0.079 0.079 0.078 0.078 0.078 0.077 0.077 0.077 0.077 0.076 

 13-24 0.508 0.2 -0.076 -0.259 -0.432 -0.577 -0.448 -0.28 -0.055 0.243 0.493 0.637 

 St-E 0.076 0.076 0.076 0.075 0.075 0.075 0.075 0.074 0.074 0.074 0.073 0.073 

                            

    (b)       for       

Lag K 1 2 3 4 5 6 7 8 9 10 11 12 

 01-12 0.511 0.011 -0.254 -0.194 -0.357 -0.343 -0.152 -0.133 -0.091 0.043 0.214 0.322 

 

St-E 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 

 13-24 0.059 -0.175 -0.167 -0.004 0.079 -0.084 0.03 -0.067 -0.15 0.025 0.043 0.155 

  St-E 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 
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Figure (4.14.3) Sample Correlogram for square root transformation of 

Rainfall values in Shwebo Township 

In Figure (4.14.3) the sample ACF illustrate a damping sine-cosine wave and 

the value of SACF at lag 1, 6, 12, 14 lie outside the confidence limits and the value of 

SPACF are significant seasonal spike at lags 1 and 12 which is a 12 period of 

seasonality. Hence, it should be transformed by taking the first seasonal differences to 

eliminate seasonality. The sample ACF and sample PACF of first seasonal differenced 

series (1 – B12) ඥ𝑍௧ were computed as shown in Table (4.14.4) and Figure (4.14.4). 
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Table (4.14.4) Sample ACF and Sample PACF Function for First Seasonal Difference Series (Wt) of Rainfall values in Shwebo 

Townships 

 

(a)  𝜌ො௞ for {Wt = (1 – B12) ඥ𝑍௧}      

Lag K 1 2 3 4 5 6 7 8 9 10 11 12 

 01-Dec -0.28 0.10 0.10 0.02 -0.02 0.05 0.02 -0.01 -0.04 -0.04 0.12 -0.48 

Wt St-E .082 .082 .082 .082 .081 .081 .081 .080 .080 .080 .080 .079 

 13-24 0.32 -0.15 -0.12 0.02 0.04 -0.08 0.00 -0.06 0.03 -0.05 0.11 0.05 

 St-E .079 .079 .078 .078 .078 .077 .077 .077 .076 .076 .076 .076 

              

(b) ∅෡௞௞ for {Wt = (1 – B12) ඥ𝑍௧}      

Lag K 1 2 3 4 5 6 7 8 9 10 11 12 

 01-Dec -0.28 0.03 0.15 0.09 -0.02 0.01 0.03 0.01 -0.06 -0.09 0.11 -0.44 

Wt St-E .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 

 13-24 0.13 0.00 -0.10 -0.03 0.05 0.01 -0.02 -0.11 0.00 -0.05 0.22 -0.17 

 St-E .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 
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Figure (4.14.4)  Sample Correlograms for First Seasonal Difference Series of      

                          Shwebo Township 

 

According to the Figure (4.14.4), the values of SACF and SPACF are spike at 

lags 1, 2 lie inside of the confidence limits accordingly. The possible model might be 

considered SAR (1) model as tentative model to this series (1 – B12) ඥ𝑍௧ . 
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 Hence, the tentative model for the series is SAR (1) process. 

 

(1 – 𝛷B12) ඥ𝑍௧ ൌ 𝜃଴ ൅ 𝑎௧ 

 

4.15 Parameter Estimation 

Using SAR (1) model, the estimated parameters with their statistics were shown 

in Table (4.15.1) and Figure (4.15.1).  

 

Table (4.15.1) Estimated Parameters and Model Statistics for SAR (1) Model of 

Rainfall values in Shwebo Township 

 Estimate SE t P-value 

Constant -.966 4.166 -.232 .817 

 

-.512 .075 -6.837 .000 

 

The following estimated model was obtained 

ሺ1 ൅ 0.512𝐵ଵଶሻඥ𝑍௧ ൌ െ0.966 ൅ 𝑎௧ 

     (0.075)        (4.166)                        

  

According to Table (4.15.1), the estimation of SAR (1) Model of rainfall values 

in Shwebo Township give 𝜃଴ = -0.966, the estimated standard error 4.166 and Φ = -

0.512, the estimated standard error 0.075 with P-value is 0.000. So, there is no evidence 

to reject the null hypothesis H0 : 𝛷 = 0. 

In addition, the sample ACFs and the sample PCFs of residual for the tentative 

model were shown in Table (4.15.2) and Figure (4.15.2). 
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Table (4.15.2) Estimated Autocorrelation and Partial Autocorrelation Function of Residual for SAR (1) Model of Rainfall values in 

Shwebo Township 

 

Lag K 1 2 3 4 5 6 7 8 9 10 11 12 

01-12 -.167 .052 .066 .030 .013 .058 .029 -.060 .014 .004 .078 -.148 

St-E .083 .086 .086 .086 .086 .086 .087 .087 .087 .087 .087 .087 

13-24 .255 -.082 -.114 .046 .045 -.056 -.017 -.053 -.075 .045 .129 -.190 

St-E .089 .094 .095 .095 .096 .096 .096 .096 .096 .097 .097 .098 

             

             

Lag K 1 2 3 4 5 6 7 8 9 10 11 12 

01-12 -.167 .025 .081 .054 .021 .056 .042 -.059 -.021 -.002 .087 -.127 

St-E .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 

13-24 .215 -.009 -.143 -.020 .056 -.027 -.043 -.084 -.049 .037 .177 -.215 

St-E .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 
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Figure (4.15.2) Sample ACF and Sample PACF of Residual values for SAR (1)    

   Model of Rainfall Series in Shwebo Township  

 

In Figure (4.15.2), the sample ACF and Sample PACF of residual is cut off after 

lag 1 lie inside confidence limits and this model exhibit a pattern that the residual series 

are not white noise process. So, (0,0,0) x (2,1,0)12 model considered as another tentative 

model which is  

 

ሺ1 െ Φଵ𝐵ଵଶ െ Φଶ𝐵ଶସሻඥ𝑍௧  ൌ 𝜃଴ 



74 
 

 

Using Seasonal ARIMA (0,0,0) x (2,1,0)12 model, the estimated parameter of 

their statistics were shown in Table (4.15.3).  

 

Table (4.15.3) Estimated Parameters and Model Statistics for Seasonal ARIMA 

(0,0,0) x (2,1,0)12 Model of Rainfall values in Shwebo Township  

  Estimate SE T P-value 

Constant -.022 .157 -.138 .891 

Φଵ -.672 .090 -7.481 .000 

Φଶ -.259 .090 -2.872 .005 

 

The estimated model was obtained:  

ሺ1 ൅ 0.672𝐵ଵଶ ൅ 0.259𝐵ଶସሻඥ𝑍௧  ൌ െ0.022 

         (0.090)         (0.090)                     (0.157) 

 

According to Table (4.15.3), it can be found that the table give 𝜃଴ ൌ 0.052, the 

estimated standard error is 0.141. The estimated parameter of Φଵ= 0.672 and Φଶ  = -

0.259, both of the estimated standard error are 0.090, the test statistics t is -7.481 and - 

2.872. Since their p-value are 0.000 and 0.005 at 1% level of significant. Hence there 

are no evidence to reject the null hypothesis Φଵ =0 and Φଶ = 0.  

 

Furthermore, the sample ACFs and the sample PCFs of residual for the tentative 

model were shown in Table (4.15.4) and Figure (4.15.4). 
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Table (4.15.4)  Estimated Autocorrelation and Partial Autocorrelation Function of Residual for (0,0,0) x (2,1,0)12 Model of Rainfall values 

in Shwebo Township 

 

Lag K 1 2 3 4 5 6 7 8 9 10 11 12 

01-12 -.046 .104 .094 .107 .014 .065 .042 -.060 -.031 .000 .072 .004 

St-E .083 .084 .084 .085 .086 .086 .086 .087 .087 .087 .087 .087 

13-24 .004 .102 -.096 -.041 .018 .059 -.048 .066 -.106 -.114 .022 .066 

St-E .087 .087 .088 .089 .089 .089 .089 .089 .090 .091 .092 .092 

             

             

Lag K 1 2 3 4 5 6 7 8 9 10 11 12 

01-12 -.046 .102 .104 .108 .005 .035 .025 -.081 -.061 -.011 .090 .038 

St-E .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 

13-24 .105 -.099 -.091 -.004 .060 -.020 .071 -.094 -.129 .008 .084 -.029 

St-E .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 
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Figure (4.15.4) Sample ACF and Sample PACF Function of Residual Values for   

ARIMA (0,0,0) x (2,1,0)12 Model of Rainfall value in Shwebo 

Township  
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In Figure (4.15.4), the sample ACF and Sample PACF of residual for the above 

tentative model which indicate that the residual series are white noise process and the 

series exhibit no patterns. But the tentative (1,0,0) x (1,1,0)12 model modified as another 

tentative model which is  

 

ሺ1 – ∅𝐵ሻሺ1 െ 𝛷𝐵ଵଶሻඥ𝑍௧  ൌ  𝜃଴ 

 

Seasonal ARIMA (1,0,0) x (1,1,0)12 model of the estimated parameter with their 

statistics were shown in Table (4.15.5).  

 

Table (4.15.5) Estimated Parameters and Model Statistics for Seasonal ARIMA 

(1,0,0) x (1,1,0)12 Model of Rainfall values in Shwebo Township 

 

  Estimate SE T P-value 

Constant -1.033 3.589 -.288 .774 

∅ -.171 .083 -2.064 .041 

𝛷 -.484 .077 -6.269 .000 

 

The following estimated model was obtained 

ሺ1 ൅ 0.171𝐵ሻሺ1 ൅ 0.484𝐵ଵଶሻඥ𝑍௧ ൌ  െ1.033 

(0.083)            (0.077)                                              

The estimation (1,0,0) x (1,1,0)12 Model of rainfall values in Shwebo Township 

give 𝜃଴ = -1.022, the estimated standard error is 3.589. The estimated parameter ∅ = -

0.171, the estimated standard error 0.083, the test statistics t is -2.064 with p-value is 

0.041. Hence, there is no evidence to reject the null hypothesis ∅ ൌ 0 and The 

estimated parameter 𝛷 = -0.484, the estimated standard error is 0.077, the test statistics 

t is -6.269 with p-value is 0.000, there is no evidence to reject the null hypothesis 𝛷 = 

0. 
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4.16 Diagnostic Checking 

 In checking the model adequacy for the residual ACF and PACF of the modified model as shown in Table (4.16.1) and Figure (4.16.1).  

       𝛾௞ሺ𝑎ො௧ሻ േ 2.𝑆. 𝐸෢  ሾ𝛾௞ ሺ𝑎ො௧ሻሿ 

Where,   

       𝑆. 𝐸෢  ሾ𝛾௞ ሺ𝑎ො௧ሻሿ = 
ଵ

√௡
  

Table (4.16.1) Estimated Autocorrelation and Partial Autocorrelation Function of Residual for (1,0,0) x (1,1,0)12 Model of  

Rainfall values in Shwebo Township  

The values of residual ACF and PACF of seasonal ARIMA (1,0,0) x (1,1,0)12 model are shown in Table (4.16.1). 

Lag K 1 2 3 4 5 6 7 8 9 10 11 12 

01-12 .003 .039 .087 .045 .026 .068 .031 -.053 .002 .017 .056 -.116 
St-E .083 .083 .083 .084 .084 .084 .085 .085 .085 .085 .085 .085 

13-24 .230 -.066 -.128 .035 .045 -.055 -.037 -.072 -.076 .054 .110 -.173 
St-E .086 .091 .091 .092 .092 .092 .093 .093 .093 .093 .094 .095 

             
             

Lag K 1 2 3 4 5 6 7 8 9 10 11 12 

01-12 .003 .039 .087 .044 .020 .058 .023 -.064 -.014 .011 .062 -.118 
St-E .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 

13-24 .231 -.073 -.132 .011 .050 -.041 -.050 -.086 -.024 .071 .133 -.235 
St-E .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 .083 
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Figure (4.16.1) Sample ACF and Sample PACF Function of Residual values for  

ARIMA (1,0,0) x (1,1,0)12 Model of Rainfall value in Shwebo 

Township  

  

 In checking model adequacy, Figure (4.16.1), the values of residual ACF is 

spike at lag 12 and the value of residual PACF is spike at lags 12 and 24 for seasonal 

ARIMA (1,0,0) x (0,1,1)12 which exhibit a pattern and the residuals are not white noise 

process. But the p-value is significant at the level of 1%. Hence, this suggested that this 
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model is inadequate and the autocorrelation of 𝑎௧ෝ  can be taken as not significant 

different from zero.  

 So, the above tentative SARIMA (0,0,0) x (2,1,0)12 model was considered as 

the fitted model for this data and used to forecast rainfall data in Shwebo township 

because the value of residual ACFs and PACFs are parsimonious and exhibit no 

patterns then they lie inside the confidence limits and white noise process.  

 

Furthermore, the autocorrelation of residuals are analyzed by using the test statistics Q.  

 H0 : 𝜌ଵ ൌ 𝜌ଶ ൌ ⋯ ൌ 𝜌௞ ൌ 0 ( There is no correlation between the residuals)  

 

Table (4.16.2) Model Statistics of SARIMA (0,0,0) x (2,1,0)12 model for Rainfall 

value in Shwebo Township 

The value of residual for SARIMA (0,0,0) x (2,1,0)12 are shown in Table (4.16.2).  

Model Statistics 

Model Fit statistics Ljung-Box Q(18) Number 
of 

Outliers 
Stationary 
R-squared 

R-
squared 

RMSE 
Normalized 

BIC 
Statistics DF Sig. 

.275 .406 70.925 8.627 11.867 16 .753 0 

 

According to Table (4.16.2), an overall check is performed by using the test 

statistics, the observed value of Q is 11.867 and it is not significant since p-value is 0. 

753 which is greater than 𝛼 ൌ 0.05, there is no autocorrelation between the residuals. 

Thus, it can be identified that the SARIMA (0,0,0) x (2,1,0)12 model is adequate for this 

data and used to forecast rainfall values in Shwebo Township. 

 

4.17 Forecasting 

 The models have been identified, estimated and analyzed to the rainfall values 

in Shwebo Township where SARIMA (0,0,0) x (2,1,0)12 is adequate, this model can be 

used to forecast the future rainfall value in Shwebo Township from January 2019 to 

December 2019. Below Table (4.17.1) and Figure (4.17.1) shows the forecast values of 

rainfall data in Shwebo Township. According to these forecasts Rainfall data series 

which will decrease in the future; this results indicates that the model provides an 

acceptable fitted to predict the rainfall data series.  
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Table (4.17.1) Forecast values with 95% Limits for Rainfall data in Shwebo 

  Township 

Year 
Forecast 

Value 

95% Limits Actual 
Value UCL LCL 

Jan-19 14 70 28 2 

Feb-19 12 52 41 0 

Mar-19 14 67 30 0 

Apr-19 26 111 10 0 

May-19 152 348 25 24 

Jun-19 155 353 26 81 

Jul-19 107 275 9 26 

Aug-19 209 435 52 149 

Sep-19 145 338 22 12 

Oct-19 154 352 26 24 

Nov-19 27 115 9 30 

Dec-19 14 67 30 0 

 

According to table (4.17.1), the result indicates that the forecast values of 

SARIMA (0,0,0) x (2,1,0)12 model is not very close to the observed value but the values 

that are between the upper confidence limit (UCL) and the lower limit (LCL). 

According to the forecast values, monthly rainfall in Shwebo Township is expected to 

decrease in the future year. 
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Figure (4.17.1) Forecast Values with 95% Limits for Rainfall values in Shwebo Township for SARIMA (0,0,0) x (2,1,0)12 Model



83 
 

 

 

CHAPTER V 

CONCLUSION 

 

 This study focuses on the modeling and forecasting of the recorded monthly 

Rainfall in Chauk and Shwebo township in Myanmar by modeling monthly data from 

January 2006 to December 2018 using time series SARIMA model which can be 

obtained by using four iteratively Box-Jenkins steps and provided the prediction of the 

monthly Rainfall series in Chauk and Shwebo township in Myanmar. Following the 

box and Jenkins methodology, the time series modeling involves transformation of the 

data in order to achieve township, followed by identification of the fitted models, 

estimation of model parameters, diagnostic checking of the assumption model and 

finally forecasting of future values. 

 The model estimation for the volume of Rainfall flow was carried out by using 

Statistical Package for Social Science (SPSS) and partially of EViews software. 

Theoretical and estimated autocorrelation function (ACF) and partial autocorrelation 

(PACF) play important role in the construction of SARIMA as in the building of non-

seasonal ARIMA models. The coefficients of the model are estimated using technique 

such as maximum Likelihood estimation (MLE) and the ordinary lest square (OLS) and 

the estimated residuals are then analyzed using the ACF and PACF to diagnose if the 

residuals are consistent with the hypothesis that the residuals are white noise. The 

results indicate that SARIMA (0,0,0) x (2,1,0)12 for Chauk Township and (0,0,0) x 

(2,1,0)12 for Shwebo Township are identified as the fitted model. This appropriate 

models for these two townships were used to find forecasts for 2019. The forecasts 

clearly show rainfall pattern for each stow 

 Evaluating and forecasting the volume of monthly rainfall are very essential. 

This model is considered appropriate to predict the monthly rainfall for the upcoming 

years to assist decision makers establish priorities for water demand, storage and 

distribution. (JECS, 2016). The normal rainfall pattern has also shifted. It has decreased 

in the months January, February, March and December in Chauk and Shwebo 

Township as well. More studies are needed to conclude on the long-term rainfall trends 

in Myanmar. In summary, analysis of observational data from the past 13 years in 

combination with model-based climate scenarios shows that the climatic conditions in 
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Myanmar’s central Dry Zone will be decreasing number of rainy days.  In the dry land, 

the livelihood is determined by favour of climatic condition. Thus, climate change 

effects become rooted for farmer vulnerability.  

In conclusion, farmers’ vulnerability emerges from the complex nature of the 

environmental and socio- economic interaction. However, this paper focuses on the 

further rainfall data which will help the vulnerability of the farmers for the specific 

small area, these issues are crucial for the consideration of dry zone agricultural 

development. This analysis has shown based on the consideration of dry zone regional 

development, the primacy is basic software and hardware infrastructure development 

such as implementation of water tube well, supporting agricultural tools and micro 

finance activity, etc. These kinds of development undermine the impacts of natural 

hazards and so the government should take it into great account for the future economic 

development of our country through agriculture. 
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Table (A-1.1) 
 

Original monthly rainfall data in Chauk Township (2006-2018) 

      Year 

 

Month 

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 

Jan 0 0 10 0 0 0 0 0 0 25 0 0 41

Feb 0 0 0 0 0 0 0 0 0 0 0 0 0

Mar 0 0 0 0 5 8 8 0 0 0 0 8 0

Apr 8 0 0 3 0 12 0 5 0 13 0 85 2

May 55 249 96 79 55 83 5 46 32 11 79 113 137

Jun 128 81 50 42 102 54 25 84 52 63 135 53 192

Jul 99 12 26 16 3 12 28 15 34 111 71 47 35

Aug 134 48 38 35 92 213 70 33 34 122 260 77 71

Sep 176 125 110 63 125 73 154 226 78 85 189 132 63

Oct 172 89 115 95 387 290 68 218 70 168 248 132 70

Nov 8 27 0 0 0 0 7 0 37 10 50 17 0

Dec 0 0 0 0 14 5 0 0 0 1 0 9 13

 Sources : Monthly Rainfall data: Department of Meteorology and Hydrology in Mandalay 

 
 



 

 

Table (A-1.2) 
 

 

Original monthly rainfall data in Shwebo Township (2006-2018) 

       Year 

Month    
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 

Jan 0 0 32 0 0 0 0 0 0 1 0 0 23

Feb 0 9 0 0 0 0 0 0 15 0 3 0 0

Mar 0 0 0 0 4 51 4 0 0 14 0 11 0

Apr 89 0 2 28 12 138 8 12 11 17 23 8 17

May 76 188 113 181 55 159 16 60 44 94 87 201 120

Jun 218 133 91 192 165 87 48 60 61 14 161 83 229

Jul 158 21 53 16 27 69 78 47 20 368 106 143 45

Aug 195 176 105 137 157 279 88 302 238 116 427 243 48

Sep 182 82 62 139 152 88 279 221 259 211 124 196 79

Oct 104 146 137 60 362 284 115 191 68 203 74 140 219

Nov 98 47 6 0 0 0 20 0 3 7 17 48 0

Dec 3 0 0 0 34 5 0 2 0 0 0 11 0

Sources : Monthly Rainfall data: Department of Meteorology and Hydrology in Mandalay



 

 

Table (A-1.3) 
 

Table (A-1.3) Seasonal Indexes for rainfall data in Chauk (2006-2018) 

Time 
Rainfall 

Data 
      

Centered 
Moving 
Average 
(CMA) 

Rainfall 
Data/CMA 

Seasonal 
Index 

2006 Jan 0           0.1642 

2006 Feb 0           0.0376 

2006 Mar 0           0.0737 

2006 Apr 8           0.2074 

2006 May 55           1.5726 

2006 Jun 128 780 65.00 130.00 65.00 1.97 1.7615 

2006 Jul 99 780 65.00 130.00 65.00 1.52 0.8056 

2006 Aug 134 780 65.00 130.00 65.00 2.06 1.7025 

2006 Sep 176 780 65.00 129.33 64.67 2.72 2.4005 

2006 Oct 172 772 64.33 144.83 72.42 2.38 2.9522 

2006 Nov 8 966 80.50 157.08 78.54 0.10 0.2326 

2006 Dec 0 919 76.58 145.92 72.96 0.00 0.0903 

2007 Jan 0 832 69.33 131.50 65.75 0.00 0.1642 

2007 Feb 0 746 62.17 120.08 60.04 0.00 0.0376 

2007 Mar 0 695 57.92 108.92 54.46 0.00 0.0737 

2007 Apr 0 612 51.00 103.58 51.79 0.00 0.2074 

2007 May 249 631 52.58 105.17 52.58 4.74 1.5726 

2007 Jun 81 631 52.58 106.00 53.00 1.53 1.7615 

2007 Jul 12 641 53.42 106.83 53.42 0.22 0.8056 

2007 Aug 48 641 53.42 106.83 53.42 0.90 1.7025 

2007 Sep 125 641 53.42 106.83 53.42 2.34 2.4005 

2007 Oct 89 641 53.42 94.08 47.04 1.89 2.9522 

2007 Nov 27 488 40.67 78.75 39.38 0.69 0.2326 

2007 Dec 0 457 38.08 77.33 38.67 0.00 0.0903 

2008 Jan 10 471 39.25 77.67 38.83 0.26 0.1642 

2008 Feb 0 461 38.42 75.58 37.79 0.00 0.0376 

2008 Mar 0 446 37.17 76.50 38.25 0.00 0.0737 

2008 Apr 0 472 39.33 76.42 38.21 0.00 0.2074 

2008 May 96 445 37.08 74.17 37.08 2.59 1.5726 

2008 Jun 50 445 37.08 73.33 36.67 1.36 1.7615 
 



 

 

Table (A-1.3) Seasonal Indexes for rainfall data in Chauk (2006-2018) (Continue) 

Time 
Rainfall 

Data 
      

Centered 
Moving 
Average 
(CMA) 

Rainfall 
Data/CMA 

Seasonal 
Index 

2008 Jul 26 435 36.25 72.5 36.25 0.717241 0.805591

2008 Aug 38 435 36.25 72.5 36.25 1.048276 1.702509

2008 Sep 110 435 36.25 72.75 36.375 3.024055 2.400451

2008 Oct 115 438 36.5 71.5833 35.7917 3.213038 2.952184

2008 Nov 0 421 35.0833 69.5 34.75 0 0.232585

2008 Dec 0 413 34.4167 68 34 0 0.090271

2009 Jan 0 403 33.5833 66.9167 33.4583 0 0.164244

2009 Feb 0 400 33.3333 62.75 31.375 0 0.037572

2009 Mar 0 353 29.4167 57.1667 28.5833 0 0.07366

2009 Apr 3 333 27.75 55.5 27.75 0.108108 0.207431

2009 May 79 333 27.75 55.5 27.75 2.846847 1.572596

2009 Jun 42 333 27.75 55.5 27.75 1.513514 1.761508

2009 Jul 16 333 27.75 55.5 27.75 0.576577 0.805591

2009 Aug 35 333 27.75 55.9167 27.9583 1.251863 1.702509

2009 Sep 63 338 28.1667 56.0833 28.0417 2.246657 2.400451

2009 Oct 95 335 27.9167 53.8333 26.9167 3.529412 2.952184

2009 Nov 0 311 25.9167 56.8333 28.4167 0 0.232585

2009 Dec 0 371 30.9167 60.75 30.375 0 0.090271

2010 Jan 0 358 29.8333 64.4167 32.2083 0 0.164244

2010 Feb 0 415 34.5833 74.3333 37.1667 0 0.037572

2010 Mar 5 477 39.75 103.833 51.9167 0.096308 0.07366

2010 Apr 0 769 64.0833 128.167 64.0833 0 0.207431

2010 May 55 769 64.0833 129.333 64.6667 0.850515 1.572596

2010 Jun 102 783 65.25 130.5 65.25 1.563218 1.761508

2010 Jul 3 783 65.25 130.5 65.25 0.045977 0.805591

2010 Aug 92 783 65.25 130.75 65.375 1.407266 1.702509

2010 Sep 125 786 65.5 132 66 1.893939 2.400451

2010 Oct 387 798 66.5 135.333 67.6667 5.719212 2.952184

2010 Nov 0 826 68.8333 133.667 66.8333 0 0.232585

2010 Dec 14 778 64.8333 130.417 65.2083 0.214696 0.090271

2011 Jan 0 787 65.5833 141.25 70.625 0 0.164244

2011 Feb 0 908 75.6667 147 73.5 0 0.037572
 



 

 

 
 

Table (A-1.3) Seasonal Indexes for rainfall data in Chauk (2006-2018) (Continue) 

Time 
Rainfall 

Data 
      

Centered 
Moving 
Average 
(CMA) 

Rainfall 
Data/CMA 

Seasonal 
Index 

2011 Mar 8 856 71.33333 134.5833 67.29167 0.118885449 0.07366

2011 Apr 12 759 63.25 126.5 63.25 0.18972332 0.207431

2011 May 83 759 63.25 125.75 62.875 1.320079523 1.572596

2011 Jun 54 750 62.5 125 62.5 0.864 1.761508

2011 Jul 12 750 62.5 125 62.5 0.192 0.805591

2011 Aug 213 750 62.5 125 62.5 3.408 1.702509

2011 Sep 73 750 62.5 124 62 1.177419355 2.400451

2011 Oct 290 738 61.5 116.5 58.25 4.978540773 2.952184

2011 Nov 0 660 55 107.5833 53.79167 0 0.232585

2011 Dec 5 631 52.58333 106.5 53.25 0.093896714 0.090271

2012 Jan 0 647 53.91667 95.91667 47.95833 0 0.164244

2012 Feb 0 504 42 90.75 45.375 0 0.037572

2012 Mar 8 585 48.75 79 39.5 0.202531646 0.07366

2012 Apr 0 363 30.25 61.08333 30.54167 0 0.207431

2012 May 5 370 30.83333 61.25 30.625 0.163265306 1.572596

2012 Jun 25 365 30.41667 60.83333 30.41667 0.821917808 1.761508

2012 Jul 28 365 30.41667 60.83333 30.41667 0.920547945 0.805591

2012 Aug 70 365 30.41667 60.16667 30.08333 2.326869806 1.702509

2012 Sep 154 357 29.75 59.91667 29.95833 5.140472879 2.400451

2012 Oct 68 362 30.16667 63.75 31.875 2.133333333 2.952184

2012 Nov 7 403 33.58333 72.08333 36.04167 0.194219653 0.232585

2012 Dec 0 462 38.5 75.91667 37.95833 0 0.090271

2013 Jan 0 449 37.41667 71.75 35.875 0 0.164244

2013 Feb 0 412 34.33333 74.66667 37.33333 0 0.037572

2013 Mar 0 484 40.33333 93.16667 46.58333 0 0.07366

2013 Apr 5 634 52.83333 105.0833 52.54167 0.095162569 0.207431

2013 May 46 627 52.25 104.5 52.25 0.880382775 1.572596

2013 Jun 84 627 52.25 104.5 52.25 1.607655502 1.761508

2013 Jul 15 627 52.25 104.5 52.25 0.28708134 0.805591

2013 Aug 33 627 52.25 104.5 52.25 0.631578947 1.702509

2013 Sep 226 627 52.25 104.0833 52.04167 4.342674139 2.400451



 

 

 
Table (A-1.3) Seasonal Indexes for rainfall data in Chauk (2006-2018) (Continue) 

Time 
Rainfall 

Data 
      

Centered 
Moving 
Average 
(CMA) 

Rainfall 
Data/CMA 

Seasonal 
Index 

2013 Oct 218 622 51.83333 102.5 51.25 4.2536585 2.952184

2013 Nov 0 608 50.66667 98.66667 49.33333 0 0.232585

2013 Dec 0 576 48 97.58333 48.79167 0 0.090271

2014 Jan 0 595 49.58333 99.25 49.625 0 0.164244

2014 Feb 0 596 49.66667 87 43.5 0 0.037572

2014 Mar 0 448 37.33333 62.33333 31.16667 0 0.07366

2014 Apr 0 300 25 53.08333 26.54167 0 0.207431

2014 May 32 337 28.08333 56.16667 28.08333 1.1394659 1.572596

2014 Jun 52 337 28.08333 58.25 29.125 1.7854077 1.761508

2014 Jul 34 362 30.16667 60.33333 30.16667 1.1270718 0.805591

2014 Aug 34 362 30.16667 60.33333 30.16667 1.1270718 1.702509

2014 Sep 78 362 30.16667 61.41667 30.70833 2.5400271 2.400451

2014 Oct 70 375 31.25 60.75 30.375 2.3045267 2.952184

2014 Nov 37 354 29.5 59.91667 29.95833 1.2350487 0.232585

2014 Dec 0 365 30.41667 67.25 33.625 0 0.090271

2015 Jan 25 442 36.83333 81 40.5 0.617284 0.164244

2015 Feb 0 530 44.16667 88.91667 44.45833 0 0.037572

2015 Mar 0 537 44.75 97.66667 48.83333 0 0.07366

2015 Apr 13 635 52.91667 103.5833 51.79167 0.2510056 0.207431

2015 May 11 608 50.66667 101.4167 50.70833 0.2169269 1.572596

2015 Jun 63 609 50.75 99.41667 49.70833 1.2673931 1.761508

2015 Jul 111 584 48.66667 97.33333 48.66667 2.2808219 0.805591

2015 Aug 122 584 48.66667 97.33333 48.66667 2.5068493 1.702509

2015 Sep 85 584 48.66667 96.25 48.125 1.7662338 2.400451

2015 Oct 168 571 47.58333 100.8333 50.41667 3.3322314 2.952184

2015 Nov 10 639 53.25 112.5 56.25 0.1777778 0.232585

2015 Dec 1 711 59.25 115.1667 57.58333 0.0173661 0.090271

2016 Jan 0 671 55.91667 123.3333 61.66667 0 0.164244

2016 Feb 0 809 67.41667 143.5 71.75 0 0.037572

2016 Mar 0 913 76.08333 158.8333 79.41667 0 0.07366

2016 Apr 0 993 82.75 168.8333 84.41667 0 0.207431

2016 May 79 1033 86.08333 172.0833 86.04167 0.91816 1.572596



 

 

 
Table (A-1.3) Seasonal Indexes for rainfall data in Chauk (2006-2018) (Continue) 

Time 
Rainfall 

Data 
      

Centered 
Moving 
Average 
(CMA) 

Rainfall 
Data/CMA 

Seasonal 
Index 

2016 Jun 135 1032 86 172 86 1.569767 1.761508

2016 Jul 71 1032 86 172 86 0.8255814 0.805591

2016 Aug 260 1032 86 172.6667 86.33333 3.01158301 1.702509

2016 Sep 189 1040 86.66667 180.4167 90.20833 2.09515012 2.400451

2016 Oct 248 1125 93.75 190.3333 95.16667 2.60595447 2.952184

2016 Nov 50 1159 96.58333 186.3333 93.16667 0.53667263 0.232585

2016 Dec 0 1077 89.75 177.5 88.75 0 0.090271

2017 Jan 0 1053 87.75 160.25 80.125 0 0.164244

2017 Feb 0 870 72.5 140.25 70.125 0 0.037572

2017 Mar 8 813 67.75 125.8333 62.91667 0.12715232 0.07366

2017 Apr 85 697 58.08333 113.4167 56.70833 1.49889787 0.207431

2017 May 113 664 55.33333 111.4167 55.70833 2.02842184 1.572596

2017 Jun 53 673 56.08333 115.5833 57.79167 0.91708724 1.761508

2017 Jul 47 714 59.5 119 59.5 0.78991597 0.805591

2017 Aug 77 714 59.5 118.3333 59.16667 1.30140845 1.702509

2017 Sep 132 706 58.83333 110.75 55.375 2.38374718 2.400451

2017 Oct 132 623 51.91667 105.8333 52.91667 2.49448819 2.952184

2017 Nov 17 647 53.91667 119.4167 59.70833 0.28471738 0.232585

2017 Dec 9 786 65.5 130 65 0.13846154 0.090271

2018 Jan 41 774 64.5 128.5 64.25 0.6381323 0.164244

2018 Feb 0 768 64 122.25 61.125 0 0.037572

2018 Mar 0 699 58.25 111.3333 55.66667 0 0.07366

2018 Apr 2 637 53.08333 104.75 52.375 0.03818616 0.207431

2018 May 137 620 51.66667 103.6667 51.83333 2.64308682 1.572596

2018 Jun 192 624 52 52 26 7.38461538 1.761508

2018 Jul 35           0.805591

2018 Aug 71           1.702509

2018 Sep 63           2.400451

2018 Oct 70           2.952184

2018 Nov 0           0.232585

2018 Dec 13           0.090271
 



 

 

Table (A-1.4) 
 

Table (A-1.4) Seasonal Indexes for rainfall data in Shwebo Township (2006-2018) 

Time 
Rainfall 
data 

        

Centered 
Moving 
Average 
(CMA) 

Rainfall 
Value/CMA 

Seasonal 
Index 

2006 Jan 0           0.1642 
2006 Feb 0           0.0376 
2006 Mar 0           0.0737 
2006 Apr 89           0.2074 
2006 May 76           1.5726 
2006 Jun 218 1123 93.58 187.17 93.58 2.33 1.7615 
2006 Jul 158 1123 93.58 187.92 93.96 1.68 0.8056 

2006 Aug 195 1132 94.33 188.67 94.33 2.07 1.7025 
2006 Sep 182 1132 94.33 181.25 90.63 2.01 2.4005 
2006 Oct 104 1043 86.92 183.17 91.58 1.14 2.9522 
2006 Nov 98 1155 96.25 185.42 92.71 1.06 0.2326 
2006 Dec 3 1070 89.17 166.92 83.46 0.04 0.0903 
2007 Jan 0 933 77.75 153.92 76.96 0.00 0.1642 
2007 Feb 9 914 76.17 144.00 72.00 0.13 0.0376 
2007 Mar 0 814 67.83 139.17 69.58 0.00 0.0737 
2007 Apr 0 856 71.33 138.42 69.21 0.00 0.2074 
2007 May 188 805 67.08 133.92 66.96 2.81 1.5726 
2007 Jun 133 802 66.83 136.33 68.17 1.95 1.7615 
2007 Jul 21 834 69.50 138.25 69.13 0.30 0.8056 

2007 Aug 176 825 68.75 137.50 68.75 2.56 1.7025 
2007 Sep 82 825 68.75 137.67 68.83 1.19 2.4005 
2007 Oct 146 827 68.92 131.58 65.79 2.22 2.9522 
2007 Nov 47 752 62.67 121.83 60.92 0.77 0.2326 
2007 Dec 0 710 59.17 121.00 60.50 0.00 0.0903 
2008 Jan 32 742 61.83 117.75 58.88 0.54 0.1642 
2008 Feb 0 671 55.92 110.17 55.08 0.00 0.0376 
2008 Mar 0 651 54.25 107.75 53.88 0.00 0.0737 
2008 Apr 2 642 53.50 103.58 51.79 0.04 0.2074 
2008 May 113 601 50.08 100.17 50.08 2.26 1.5726 
2008 Jun 91 601 50.08 97.50 48.75 1.87 1.7615 
2008 Jul 53 569 47.42 94.83 47.42 1.12 0.8056 

2008 Aug 105 569 47.42 94.83 47.42 2.21 1.7025 
2008 Sep 62 569 47.42 97.00 48.50 1.28 2.4005 
2008 Oct 137 595 49.58 104.83 52.42 2.61 2.9522 
2008 Nov 6 663 55.25 118.92 59.46 0.10 0.2326 

 



 

 

Table (A-1.4) Seasonal Indexes for rainfall data in Shwebo Township  

(2006-2018) (Continue) 

Time 
Rainfall 

data 
      

Centered 
Moving 
Average 
(CMA) 

Rainfall 
Value/CMA 

Seasonal 
Index 

2008 Dec 0 764 63.6667 124.25 62.125 0 0.09027
2009 Jan 0 727 60.5833 123.833 61.9167 0 0.16424
2009 Feb 0 759 63.25 132.917 66.4583 0 0.03757
2009 Mar 0 836 69.6667 132.917 66.4583 0 0.07366
2009 Apr 28 759 63.25 126 63 0.44444 0.20743
2009 May 181 753 62.75 125.5 62.75 2.88446 1.5726
2009 Jun 192 753 62.75 125.5 62.75 3.05976 1.76151
2009 Jul 16 753 62.75 125.5 62.75 0.25498 0.80559
2009 Aug 137 753 62.75 125.833 62.9167 2.17748 1.70251
2009 Sep 139 757 63.0833 124.833 62.4167 2.22697 2.40045
2009 Oct 60 741 61.75 113 56.5 1.06195 2.95218
2009 Nov 0 615 51.25 100.25 50.125 0 0.23259
2009 Dec 0 588 49 98.9167 49.4583 0 0.09027
2010 Jan 0 599 49.9167 101.5 50.75 0 0.16424
2010 Feb 0 619 51.5833 104.25 52.125 0 0.03757
2010 Mar 4 632 52.6667 130.5 65.25 0.0613 0.07366
2010 Apr 12 934 77.8333 155.667 77.8333 0.15418 0.20743
2010 May 55 934 77.8333 158.5 79.25 0.69401 1.5726
2010 Jun 165 968 80.6667 161.333 80.6667 2.04545 1.76151
2010 Jul 27 968 80.6667 161.333 80.6667 0.33471 0.80559
2010 Aug 157 968 80.6667 165.25 82.625 1.90015 1.70251
2010 Sep 152 1015 84.5833 179.667 89.8333 1.69202 2.40045
2010 Oct 362 1141 95.0833 198.833 99.4167 3.64124 2.95218
2010 Nov 0 1245 103.75 201 100.5 0 0.23259
2010 Dec 34 1167 97.25 198 99 0.34343 0.09027
2011 Jan 0 1209 100.75 211.667 105.833 0 0.16424
2011 Feb 0 1331 110.917 216.5 108.25 0 0.03757
2011 Mar 51 1267 105.583 204.667 102.333 0.49837 0.07366
2011 Apr 138 1189 99.0833 198.167 99.0833 1.39277 0.20743
2011 May 159 1189 99.0833 195.75 97.875 1.62452 1.5726
2011 Jun 87 1160 96.6667 193.333 96.6667 0.9 1.76151
2011 Jul 69 1160 96.6667 193.333 96.6667 0.71379 0.80559
2011 Aug 279 1160 96.6667 189.417 94.7083 2.94589 1.70251
2011 Sep 88 1113 92.75 174.667 87.3333 1.00763 2.40045

 
 



 

 

Table (A-1.4) Seasonal Indexes for rainfall data in Shwebo Township  

(2006-2018) (Continue) 

Time 
Rainfall 

data 
      

Centered 
Moving 
Average 
(CMA) 

Rainfall 
Value/ 
CMA 

Seasonal 
Index 

2011 Oct 284 983 81.9167 151.917 75.9583 3.73889 2.95218
2011 Nov 0 840 70 136.75 68.375 0 0.23259
2011 Dec 5 801 66.75 134.25 67.125 0.07449 0.09027
2012 Jan 0 810 67.5 119.083 59.5417 0 0.16424
2012 Feb 0 619 51.5833 119.083 59.5417 0 0.03757
2012 Mar 4 810 67.5 120.917 60.4583 0.06616 0.07366
2012 Apr 8 641 53.4167 108.5 54.25 0.14747 0.20743
2012 May 16 661 55.0833 109.75 54.875 0.29157 1.5726
2012 Jun 48 656 54.6667 109.333 54.6667 0.87805 1.76151
2012 Jul 78 656 54.6667 109.333 54.6667 1.42683 0.80559
2012 Aug 88 656 54.6667 109 54.5 1.61468 1.70251
2012 Sep 279 652 54.3333 109 54.5 5.11927 2.40045
2012 Oct 115 656 54.6667 113 56.5 2.0354 2.95218
2012 Nov 20 700 58.3333 117.667 58.8333 0.33994 0.23259
2012 Dec 0 712 59.3333 116.083 58.0417 0 0.09027
2013 Jan 0 681 56.75 131.333 65.6667 0 0.16424
2013 Feb 0 895 74.5833 144.333 72.1667 0 0.03757
2013 Mar 0 837 69.75 145.833 72.9167 0 0.07366
2013 Apr 12 913 76.0833 150.5 75.25 0.15947 0.20743
2013 May 60 893 74.4167 149 74.5 0.80537 1.5726
2013 Jun 60 895 74.5833 149.167 74.5833 0.80447 1.76151
2013 Jul 47 895 74.5833 150.417 75.2083 0.62493 0.80559
2013 Aug 302 910 75.8333 151.667 75.8333 3.98242 1.70251
2013 Sep 221 910 75.8333 151.583 75.7917 2.91589 2.40045
2013 Oct 191 909 75.75 150.167 75.0833 2.54384 2.95218
2013 Nov 0 893 74.4167 148.917 74.4583 0 0.23259
2013 Dec 2 894 74.5 146.75 73.375 0.02726 0.09027
2014 Jan 0 867 72.25 139.167 69.5833 0 0.16424
2014 Feb 15 803 66.9167 137 68.5 0.21898 0.03757
2014 Mar 0 841 70.0833 129.917 64.9583 0 0.07366
2014 Apr 11 718 59.8333 119.917 59.9583 0.18346 0.20743
2014 May 44 721 60.0833 120 60 0.73333 1.5726
2014 Jun 61 719 59.9167 119.917 59.9583 1.01737 1.76151

 
 
 



 

 

Table (A-1.4) Seasonal Indexes for rainfall data in Shwebo Township  

(2006-2018) (Continue) 

Time 
Rainfall 

data 
      

Centered 
Moving 
Average 
(CMA) 

Rainfall 
Value/ 
CMA 

Seasonal 
Index 

2014 Jul 20 720 60 118.75 59.375 0.33684 0.80559
2014 Aug 238 705 58.75 118.667 59.3333 4.01124 1.70251
2014 Sep 259 719 59.9167 120.333 60.1667 4.30471 2.40045
2014 Oct 68 725 60.4167 125 62.5 1.088 2.95218
2014 Nov 3 775 64.5833 125.25 62.625 0.0479 0.23259
2014 Dec 0 728 60.6667 150.333 75.1667 0 0.09027
2015 Jan 1 1076 89.6667 169.167 84.5833 0.01182 0.16424
2015 Feb 0 954 79.5 155 77.5 0 0.03757
2015 Mar 14 906 75.5 162.25 81.125 0.17257 0.07366
2015 Apr 17 1041 86.75 173.833 86.9167 0.19559 0.20743
2015 May 94 1045 87.0833 174.167 87.0833 1.07943 1.5726
2015 Jun 14 1045 87.0833 174.083 87.0417 0.16084 1.76151
2015 Jul 368 1044 87 174.25 87.125 4.22382 0.80559
2015 Aug 116 1047 87.25 173.333 86.6667 1.33846 1.70251
2015 Sep 211 1033 86.0833 172.667 86.3333 2.44402 2.40045
2015 Oct 203 1039 86.5833 172.583 86.2917 2.35249 2.95218
2015 Nov 7 1032 86 184.25 92.125 0.07598 0.23259
2015 Dec 0 1179 98.25 174.667 87.3333 0 0.09027
2016 Jan 0 917 76.4167 178.75 89.375 0 0.16424
2016 Feb 3 1228 102.333 197.417 98.7083 0.03039 0.03757
2016 Mar 0 1141 95.0833 179.417 89.7083 0 0.07366
2016 Apr 23 1012 84.3333 169.5 84.75 0.27139 0.20743
2016 May 87 1022 85.1667 170.333 85.1667 1.02153 1.5726
2016 Jun 161 1022 85.1667 170.333 85.1667 1.89041 1.76151
2016 Jul 106 1022 85.1667 170.083 85.0417 1.24645 0.80559
2016 Aug 427 1019 84.9167 170.75 85.375 5.00146 1.70251
2016 Sep 124 1030 85.8333 170.417 85.2083 1.45526 2.40045
2016 Oct 74 1015 84.5833 178.667 89.3333 0.82836 2.95218
2016 Nov 17 1129 94.0833 181.667 90.8333 0.18716 0.23259
2016 Dec 0 1051 87.5833 178.25 89.125 0 0.09027
2017 Jan 0 1088 90.6667 166 83 0 0.16424
2017 Feb 0 904 75.3333 156.667 78.3333 0 0.03757
2017 Mar 11 976 81.3333 168.167 84.0833 0.13082 0.07366

 
 
 
 



 

 

Table (A-1.4) Seasonal Indexes for rainfall data in Shwebo Township  

(2006-2018) (Continue) 

Time 
Rainfall 

data 
      

Centered 
Moving 
Average 
(CMA) 

Rainfall 
Value/ 
CMA 

Seasonal 
Index 

2017 Apr 8 1042 86.8333 176.25 88.125 0.09078 0.20743
2017 May 201 1073 89.4167 179.75 89.875 2.23644 1.5726
2017 Jun 83 1084 90.3333 182.583 91.2917 0.90917 1.76151
2017 Jul 143 1107 92.25 184.5 92.25 1.55014 0.80559
2017 Aug 243 1107 92.25 183.583 91.7917 2.6473 1.70251
2017 Sep 196 1096 91.3333 183.417 91.7083 2.13721 2.40045
2017 Oct 140 1105 92.0833 177.417 88.7083 1.57821 2.95218
2017 Nov 48 1024 85.3333 182.833 91.4167 0.52507 0.23259
2017 Dec 11 1170 97.5 186.833 93.4167 0.11775 0.09027
2018 Jan 23 1072 89.3333 162.417 81.2083 0.28322 0.16424
2018 Feb 0 877 73.0833 136.417 68.2083 0 0.03757
2018 Mar 0 760 63.3333 133.25 66.625 0 0.07366
2018 Apr 17 839 69.9167 135.833 67.9167 0.25031 0.20743
2018 May 120 791 65.9167 130.917 65.4583 1.83323 1.5726
2018 Jun 229 780 65 65 32.5 7.04615 1.76151
2018 Jul 45           0.80559
2018 Aug 48           1.70251
2018 Sep 79           2.40045
2018 Oct 219           2.95218
2018 Nov 0           0.23259
2018 Dec 0           0.09027

 
 
 
 
 
 
 
 
 



 

 

 
Map 1. Location of Study Sites. 

 


